Fingerprint is a common biometric used for authentication and verification of an individual. These images are degraded when fingers are wet, dirty, dry or wounded and due to the failure of the sensors, etc. The extraction of the fingerprint from a degraded image requires denoising and inpainting. We propose to address these problems with an endto-end trainable Convolutional Neural Network based architecture called FPD-M-net, by posing the fingerprint denoising and inpainting problem as a segmentation (foreground) task. Our architecture is based on the M-net with a change: structure similarity loss function, used for better extraction of the fingerprint from the noisy background. Our method outperforms the baseline method and achieves an overall 3rd rank in the Chalearn LAP Inpainting Competition Track 3−Fingerprint Denoising and Inpainting, ECCV 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.