Hot cracking susceptibility of the Fe-Ni-based precipitation hardening cast superalloy Alloy 718 was studied by Varestraint weldability testing. The effect of two hot isostatic pressing (HIP) treatments commonly employed in the aerospace industry was investigated in reference to the as cast condition. It was found that the heat affected zone (HAZ) liquation cracking susceptibility increased for samples with pre-weld HIP treatments. The as cast condition disclosed the best response for liquation cracking followed by HIP-1120 (1120°C/4h (HIP) + 1050°C/1h and furnace cooling to 650°C/1h in vacuum + 950°C/1h) and HIP-1190 (1190°C/4h (HIP) + 870°C/10h and furnace cooling to 650°C/1h in vacuum + 950°C/1h). The amount of the secondary precipitates and base metal grain size was found to be important parameters influencing the cracking susceptibility. Regarding solidification cracking susceptibility, the three conditions appear to behave similarly.
Varestraint weldability testing and Gleeble thermomechanical simulation of the newly developed cast form of Haynes® 282® were performed to understand how heat-affected-zone (HAZ) liquation cracking is influenced by different preweld heat treatments. In contrast to common understanding, cracking susceptibility did not improve with a higher degree of homogenization achieved at a higher heat-treatment temperature. Heat treatments with a 4 h dwell time at 1120 °C and 1160 °C exhibited low cracking sensitivity, whereas by increasing the temperature to 1190 °C, the cracking was exacerbated. Nanosecond ion mass spectrometry analysis was done to characterize B segregation at grain boundaries that the 1190 °C heat treatment indicated to be liberated from the dissolution of C–B rich precipitates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.