Vascular endothelial growth factor (VEGF) is a mitogen for endothelial cells and an inducer of angiogenesis. VEGF is also known as a vascular permeability factor because it can stimulate vascular permeability. In the rodent, increased uterine vascular permeability occurs at the sites of blastocysts with the onset of the attachment reaction. This is followed by stromal decidualization and angiogenesis. We examined the temporal and spatial expression of VEGF and its receptors, Flk-1 and Flt-1, in the mouse uterus during the peri-implantation period (days 1-8) using Northern and in situ hybridization to assess the involvement of VEGF in the process of implantation. Primarily, a major (approximately 4.2 kb) transcript for VEGF mRNA was detected in uterine poly(A)+ samples, except for the presence of two other minor (approximately 3.7 and 2.5 kb) transcripts in decidual samples. The steady-state levels of these transcripts did not vary much during the peri-implantation period, except for an increase in day-8 decidual samples. Results of in situ hybridization experiments demonstrated accumulation of VEGF mRNA in the luminal epithelium on days 1 and 2. In contrast, stromal cells exhibited a modest level of signals on day 3. On day 4, luminal epithelial cells and those in the subepithelial stromal bed accumulated VEGF mRNA. On days 5-7, a clear cell type-specific accumulation of this mRNA was noted. On day 5 after the initial attachment reaction, luminal epithelial and stromal cells immediately surrounding the blastocyst exhibited accumulation of VEGF mRNA. On days 6-8, the accumulation occurred in cells in the decidual bed at both the mesometrial and antimesometrial poles. The embryo, especially the trophoblast giant cells, also accumulated VEGF mRNA on day 8. The expression of the VEGF receptors, Flk-1 and Flt-1, was also examined. A single transcript (approximately 6.5-7.0 kb) for Flk-1 mRNA and two transcripts (approximately 6.5 and 7.5 kb) for that of Flt-1 were detected in poly(A)+ uterine RNA samples. In situ hybridization studies showed accumulation of Flk-1 mRNA in a subset of cells in the stromal bed on day 4, but not in any uterine cell types on day 1. On days 5-8, cells in both the mesometrial and antimesometrial decidual beds exhibited accumulation of Flk-1 and Flt-1 mRNAs. Lectin binding (Dolichos biflorus agglutinin) was used to identify newly sprouting endothelial cells (angiogenesis), while an antibody to the von Willebrand factor (vWF) was employed to identify endothelial cells in general.(ABSTRACT TRUNCATED AT 400 WORDS)
A facile and low cost synthesis of Ni(OH)2 nanobelt (NB) modified electroactive poly(vinylidene fluoride) (PVDF) thin films with excellent dielectric properties has been reported via in situ formation of Ni(OH)2 NBs in the PVDF matrix. The formation and morphology of the NBs are confirmed by UV-visible spectroscopy and field emission scanning electron microscopy respectively. A remarkable improvement in electroactive β phase nucleation (∼82%) and the dielectric constant (ε ∼ 3.1 × 10(6) at 20 Hz) has been observed in the nanocomposites (NCs). The interface between the NBs and the polymer matrix plays a crucial role in the enhancement of the electroactive β phase and the dielectric properties of thin films. Strong interaction via hydrogen bonds between Ni(OH)2 NBs and the PVDF matrix is the main reason for enhancement in β phase crystallization and improved dielectric properties. The NC thin films can be utilized for potential applications as high energy storage devices like supercapacitors, solid electrolyte batteries, self-charging power cells, piezoelectric nanogenerators, and thin film transistors and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.