To analyze the effects of the microbeam width (25, 50 and 75 microm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 microm wide microbeams, all spaced 211 microm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 microm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of approximately 50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 microm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 microm or 25 microm widths when used with a 211 microm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in all groups. The use of 50 microm wide microbeams combined with moderate peak doses resulted in a higher therapeutic ratio.
The major limitation to reaching a curative radiation dose in radioresistant tumors such as malignant gliomas is the high sensitivity to radiation and subsequent damage of the surrounding normal tissues. Novel dose delivery methods such as minibeam radiation therapy (MBRT) may help to overcome this limitation. MBRT utilizes a combination of spatial fractionation of the dose and submillimetric (600 μm) field sizes with an array ("comb") of parallel thin beams ("teeth"). The dose profiles in MBRT consist of peaks and valleys. In contrast, the seamless irradiations of the several squared centimeter field sizes employed in standard radiotherapy result in homogeneous dose distributions (and consequently, flat dose profiles). The innovative dose delivery methods employed in MBRT, unlike standard radiation therapy, have demonstrated remarkable normal tissue sparing. In this pilot work, we investigated the tolerance of the rat brain after whole-brain MBRT irradiation. A dose escalation was used to study the tissue response as a function of dose, so that a threshold could be established: doses as high as 100 Gy in one fraction were still well tolerated by the rat brain. This finding suggests that MBRT may be used to deliver higher and potentially curative radiation doses in clinical practice.
This feasibility work assesses the therapeutic effectiveness of minibeam radiation therapy, a new synchrotron radiotherapy technique. In this new approach the irradiation is performed on 9L gliosarcoma-bearing rats with arrays of parallel beams of width 500-700 µm. Two irradiation configurations were compared: a lateral unidirectional irradiation and two orthogonal arrays interlacing at the target. A dose escalation study was performed. A factor of three gain in the mean survival time obtained for some animals paves the way for further exploration of the different possibilities of this technique and its further optimization.
CD34 is a marker for pluripotent stem cells also present on lineage- committed hematopoietic progenitors from bone marrow and a subpopulation of immature thymocytes. To characterize these early immature thymocytes, we have studied 24 pediatric thymus samples for CD34/7 expression. Three subpopulations could be defined from these T- cell receptor (TcR-) immature thymocytes: CD34+7++ (12.0 +/- 5.8), CD34- 7++ (12.6 +/- 8.6), and CD34-7+ (71.5 +/- 17.0%). CD7++ represents upregulation of this antigen and is expressed by cells of a blast-like morphology. Three-color flow cytometric analysis of these three subsets suggests the following ordered differentiation sequence: CD34+7++1-4-8- 45RA+-->CD34+7++1+ 4+8-45RA+/- -->CD34-7++1+4+8-+45RO+-->CD34- 7+1++4+8+45RO+. Early immature thymocyte cell division is essential in the thymus to generate a large number of precursors before the initiation of the selection process. We observed that both CD2 as well CD28 activation pathways were inefficient to serve as costimulant with phorbol ester 12-O-tetradecanoyl phorbol 13-acetate or interleukin-2 (IL-2) to induce the proliferation of the three CD34/7 subsets isolated by cell sorting. However, whereas IL-1, IL-2, IL-3, IL-4, granulocyte colony-stimulating factor, and granulocyte-macrophage colony- stimulating factor were ineffective, IL-7 was a potent cytokine, alone or in synergy with stem cell factor (SCF) to induce immature thymocyte proliferation. The proliferation induced by IL-7 or IL-7 + SCF is restricted to the CD34+ cells and, after 4 or 8 days of culture with IL- 7, some CD34+7++ acquire the expression of CD4 and/or CD8, but remain CD3/TcR-. We also tested the myeloid differentiation capacity of these CD34 immature thymocytes. Using two different approaches, myeloid colony formation in methylcellulose and limiting dilution analysis in the presence of myeloid growth factors, we were unable to detect myeloid differentiation capacity from CD34+ early thymocytes, whereas CD34+7+ from bone marrow contained about 10% of the clonogenic cells present in the CD34+7- fraction. Together, these data support the concept that thymic CD34+7++ represents the earliest thymic subset of fully committed T-lineage cells, capable of proliferating specifically to IL-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.