BackgroundGenetic transformation of microalgae has been hampered by inefficient transgene expression, limiting the progress of microalgal biotechnology. Many vector tools and strategies have been developed in recent years to improve transgene expression in the model microalga Chlamydomonas, but these were hardly applied to other microalgae. In this work, naturally-isolated oleaginous microalgae were accessed for genetic transformation, and various expression systems were evaluated in a selected microalga to circumvent inefficient transgene expression.ResultsInitially, a strain of Scenedesmus acutus was selected from the oleaginous microalgal collection based on its highest transformation rate and transgene stability. This strain, which had very low or no GFP reporter expression, was first tested to improve transgene expression by using intron-containing constructs and the transcript fusion using ble::E2A. The intron-containing constructs yielded 2.5–7.5% of transformants with 2–4-fold fluorescence signals, while the majority of the transformants of the transcript fusion had the fluorescence signals up to 10-fold. Subsequently, three UV-induced S. acutus mutants were isolated with moderate increases in the level and frequency of transgene expression (2–3-fold and 10–12%, respectively). Finally, a transcript fusion system was developed using psy white mutants with an expression vector containing PSY::E2A for complementation and light selection. Transformants with green colonies were selected under light exposure, and the transgene expression was detected at protein levels. Although the improvement using PSY::E2A was only minor (1–2-fold increase and ~ 7% of transformants), this system provides an alternative selectable marker that is compatible with large-scale culture.ConclusionsHere, the overall improvement of transgene expression using the Chlamydomonas tools was moderate. The most effective tool so far is the transcript fusion using ble::E2A system. This work demonstrates that, so far, genetic engineering of non-model microalgae is still a challenging task. Further development of tools and strategies for transgene expression in microalgae are critically needed.Electronic supplementary materialThe online version of this article (10.1186/s12896-018-0497-z) contains supplementary material, which is available to authorized users.
Phenotypic analysis of cassava root crowns (CRCs) so far has been limited to visual inspection and very few measurements due to its laborious process in the field. Here, we developed a platform for acquiring 3D CRC models using close-range photogrammetry for phenotypic analysis. The state of the art is a low cost and easy to set up 3D acquisition requiring only a background sheet, a reference object and a camera, compatible with field experiments in remote areas. We tested different software with CRC samples, and Agisoft and Blender were the most suitable software for generating high-quality 3D models and data analysis, respectively. We optimized the workflow by testing different numbers of images for 3D reconstruction and found that a minimum of 25 images per CRC can provide high quality 3D models. Up to ten traits, including 3D crown volumes, 3D crown surface, root density, surface-to-volume ratio, root numbers, root angle, crown diameter, cylinder soil volume, CRC compactness and root length can be extracted providing novel parameters for studying cassava storage roots. We applied this platform to partial-inbred cassava populations and demonstrated that our platform provides reliable 3D CRC modelling for phenotypic analysis, analysis of genetic variances and supporting breeding selection.
Cell walls are dynamic and multi-component materials that play important roles in many areas of plant biology. The composition and interactions of the structural elements give rise to material properties, which are modulated by the activity of wall-related enzymes. Studies of the genes and enzymes that determine wall composition and function have made great progress, but rarely take account of potential compensatory changes in wall polymers that may accompany and accommodate changes in other components, particularly for specific polysaccharides. Here, we present a method that allows the simultaneous examination of the mass distributions and quantities of specific cell wall matrix components, allowing insight into direct and indirect consequences of cell wall manipulations. The method employs gel-permeation chromatography fractionation of cell wall polymers followed by enzyme-linked immunosorbent assay to identify polymer types. We demonstrate the potential of this method using glycan-directed monoclonal antibodies to detect epitopes representing xyloglucans, heteromannans, glucuronoxylans, homogalacturonans (HGs) and methyl-esterified HGs. The method was used to explore compositional diversity in different Arabidopsis organs and to examine the impacts of changing wall composition in a number of previously characterized cell wall mutants. As demonstrated in this article, this methodology allows a much deeper understanding of wall composition, its dynamism and plasticity to be obtained, furthering our knowledge of cell wall biology.
Plant cell wall biosynthesis is a complex process that requires proteins and enzymes from glycan synthesis to wall assembly. We show that disruption of At3g50120 (DUF247-1), a member of the DUF247 multigene family containing 28 genes in Arabidopsis, results in alterations to the structure and composition of cell wall polysaccharides and reduced growth and plant size. An ELISA using cell wall antibodies shows that the mutants also exhibit ~50% reductions in xyloglucan (XyG), glucuronoxylan (GX) and heteromannan (HM) epitopes in the NaOH fraction and ~50% increases in homogalacturonan (HG) epitopes in the CDTA fraction. Furthermore, the polymer sizes of XyGs and GXs are reduced with concomitant increases in short-chain polymers, while those of HGs and mHGs are slightly increased. Complementation using 35S:DUF247-1 partially recovers the XyG and HG content, but not those of GX and HM, suggesting that DUF247-1 is more closely associated with XyGs and HGs. DUF247-1 is expressed throughout Arabidopsis, particularly in vascular and developing tissues, and its disruption affects the expression of other gene members, indicating a regulatory control role within the gene family. Our results demonstrate that DUF247-1 is required for normal cell wall composition and structure and Arabidopsis growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.