Cloud computing provides resources over the Internet and allows a plethora of applications to be deployed to provide services for different industries. The major bottleneck being faced currently in these cloud frameworks is their limited scalability and hence inability to cater to the requirements of centralized Internet of Things (IoT) based compute environments. The main reason for this is that latency-sensitive applications like health monitoring and surveillance systems now require computation over large amounts of data (Big Data) transferred to centralized database and from database to cloud data centers which leads to drop in performance of such systems. The new paradigms of fog and edge computing provide innovative solutions by bringing resources closer to the user and provide low latency and energy efficient solutions for data processing compared to cloud domains. Still, the current fog models have many limitations and focus from a limited perspective on either accuracy of results or reduced response time but not both. We proposed a novel framework called HealthFog for integrating ensemble deep learning in Edge computing devices and deployed it for a real-life application of automatic Heart Disease analysis. HealthFog delivers healthcare as a fog service using IoT devices and efficiently manages the data of heart patients, which comes as user requests. Fog-enabled cloud framework, FogBus is used to deploy and test the performance of the proposed model in terms of power consumption, network bandwidth, latency, jitter, accuracy and execution time. HealthFog is configurable to various operation modes which provide the best Quality of Service or prediction accuracy, as required, in diverse fog computation scenarios and for different user requirements.
The outbreak of COVID-19 Coronavirus, namely SARS-CoV-2, has created a calamitous situation throughout the world. The cumulative incidence of COVID-19 is rapidly increasing day by day. Machine Learning (ML) and Cloud Computing can be deployed very effectively to track the disease, predict growth of the epidemic and design strategies and policy to manage its spread. This study applies an improved mathematical model to analyse and predict the growth of the epidemic. An ML-based improved model has been applied to predict the potential threat of COVID-19 in countries worldwide. We show that using iterative weighting for fitting Generalized Inverse Weibull distribution, a better fit can be obtained to develop a prediction framework. This can be deployed on a cloud computing platform for more accurate and real-time prediction of the growth behavior of the epidemic. A data driven approach with higher accuracy as here can be very useful for a proactive response from the government and citizens. Finally, we propose a set of research opportunities and setup grounds for further practical applications. Predicted curves for some of the most affected countries can be seen at https://collaboration.coraltele.com/covid/.
Cloud computing plays a critical role in modern society and enables a range of applications from infrastructure to social media. Such system must cope with varying load and evolving usage reflecting societies' interaction and dependency on automated computing systems whilst satisfying Quality of Service (QoS) guarantees. Enabling these systems are a cohort of conceptual technologies, synthesised to meet demand of evolving computing applications. In order to understand current and future challenges of such system, there is a need to identify key technologies enabling future applications. In this study, we aim to explore how three emerging paradigms (Blockchain, IoT and Artificial Intelligence) will influence future cloud computing systems. Further, we identify several technologies driving these paradigms and invite international experts to discuss the current status and future directions of cloud computing. Finally, we proposed a conceptual model for cloud futurology to explore the influence of emerging paradigms and technologies on evolution of cloud computing.
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. It is similar to influenza viruses and raises concerns through alarming levels of spread and severity resulting in an ongoing pandemic worldwide. Within eight months (by August 2020), it infected 24.0 million persons worldwide and over 824 thousand have died. Drones or Unmanned Aerial Vehicles (UAVs) are very helpful in handling the COVID-19 pandemic. This work investigates the drone-based systems, COVID-19 pandemic situations, and proposes an architecture for handling pandemic situations in different scenarios using real-time and simulation-based scenarios. The proposed architecture uses wearable sensors to record the observations in Body Area Networks (BANs) in a push–pull data fetching mechanism. The proposed architecture is found to be useful in remote and highly congested pandemic areas where either the wireless or Internet connectivity is a major issue or chances of COVID-19 spreading are high. It collects and stores the substantial amount of data in a stipulated period and helps to take appropriate action as and when required. In real-time drone-based healthcare system implementation for COVID-19 operations, it is observed that a large area can be covered for sanitization, thermal image collection, and patient identification within a short period (2 KMs within 10 min approx.) through aerial route. In the simulation, the same statistics are observed with an addition of collision-resistant strategies working successfully for indoor and outdoor healthcare operations. Further, open challenges are identified and promising research directions are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.