In order to improve the efficiency of the thermochemical copper-chlorine cycle (Cu-Cl) for hydrogen production, a quench cell configuration for the quenching of cuprous chloride (CuCl) is being investigated. Initial testing has been performed in water to determine whether the molten cuprous chloride can be cooled enough to be quenched in hydrochloric acid (HCl (aq)). Quenching in HCl (aq) would reduce the number of components in the overall cycle, simplifying it and potentially making it more cost effective. A thermal camera was used to experimentally obtain the heat loss as the CuCl falls through the heat exchanger and into the quench cell. In addition, a FlowSense 2M shadow imaging camera was used to observe the behavior of the CuCl droplets interacting with the quench solution. It was observed that the CuCl droplet disintegrating into dust like particles as it enters the water pool and vapour was generated hence the temperature at the surface of the droplet as it entered the liquid water exceeded 100 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.