Two-dimensional transition metal dichalcogenides (TMDs) are promising low-dimensional materials which can produce diverse electronic properties and band alignment in van der Waals heterostructures. Systematic density functional theory (DFT) calculations are performed for 24 different TMD monolayers and their bilayer heterostacks. DFT calculations show that monolayer TMDs can behave as semiconducting, metallic or semimetallic depending on their structures; we also calculated the band alignment of the TMDs to predict their alignment in van der Waals heterostacks. We have applied the charge equilibration model (CEM) to obtain a quantitative formula predicting the highest occupied state of any type of bilayer TMD heterostacks (552 pairs for 24 TMDs). The CEM predicted values agree quite well with the selected DFT simulation results. The quantitative prediction of the band alignment in the TMD heterostructures can provide an insightful guidance to the development of TMD-based devices.
Metal-insulator transitions in low-dimensional materials under ambient conditions are rare and worth pursuing due to their intriguing physics and rich device applications. Monolayer MoTe2 and WTe2 are distinguished from other TMDs by the existence of an exceptional semimetallic distorted octahedral structure (T') with a quite small energy difference from the semiconducting H phase. In the process of transition metal alloying, an equal stability point of the H and the T' phase is observed in the formation energy diagram of monolayer WxMo1-xTe2. This thermodynamically driven phase transition enables a controlled synthesis of the desired phase (H or T') of monolayer WxMo1-xTe2 using a growth method such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). Furthermore, charge mediation, as a more feasible method, is found to make the T' phase more stable than the H phase and induce a phase transition from the H phase (semiconducting) to the T' phase (semimetallic) in monolayer WxMo1-xTe2 alloy. This suggests that a dynamic metal-insulator phase transition can be induced, which can be exploited for rich phase transition applications in two-dimensional nanoelectronics.
We performed first-principles calculations to investigate the hydrogen storage characteristics of carbon-based 3-D solid structures, called covalently bonded graphenes (CBGs). Using the density functional method and the Møller-Plesset perturbation method, we show that H2 molecular binding in the CBGs is stronger than that on an isolated graphene with an increase of 20 to approximately 150% in binding energy, which is very promising for storage at ambient conditions. We also suggest that the CBGs of appropriate size can effectively work as frameworks for transition metal dispersion. The adsorption properties of hydrogen on the metal atoms dispersed inside the CBGs are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.