Evaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done to obtain applicable satellite rainfall estimates in the groundwater basin of the Merapi Aquifer System (MAS). Performance of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based rainfall in much detail. CM (CMORPH) has larger underestimation compared to other satellite-based rainfall assessments. This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) has the lowest. CM has a good performance to detect no rain, while IMR (GPM IMERG) has the worst performance. IMR and CHR have a good performance to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite products. CHR mostly has a good performance compared to TR (TRMM), especially on wet periods. CM, IMR, and TR mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based rainfall assessments have large discrepancy compared with rain gauge data along mountain range where orographic rainfall usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall than to merge both IMR and TR together.
Evaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done to obtain applicable satellite rainfall estimates in groundwater basin of Merapi Aquifer System (MAS). Performance of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based rainfall in much detail.CM (CMORPH) has larger underestimation compared to other satellite-based rainfall. This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) is the lowest. CM has a good performance to detect no rain, while IMR (GPM-IMERG) has the worst performance. IMR and CHR have a good performance to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite products. CHR mostly has a good performance compared to TR (TRMM) especially on wet periods. CM, IMR, and TR mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based rainfall has large discrepancy compared with rain gauge data along mountain range where orographic rainfall usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall except to merge both IMR and TR together.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.