Over the last few years, fused filament fabrication (FFF) has become one of the most promising and widely used techniques for the rapid prototyping process. A number of studies have also shown the possibility of FFF being used for the fabrication of functional products, such as biomedical implants and automotive components. However, the poor mechanical properties possessed by FFF-processed products are considered one of the major shortcomings of this technique. Over the last decade, many researchers have attempted to improve the mechanical properties of FFF-processed products using several strategies—for instance, by applying the short fiber reinforcement (SFR), continuous fiber reinforcement (CFR), powder addition reinforcement (PAR), vibration-assisted FFF (VA-FFF) methods, as well as annealing. In this paper, the details of all these reinforcement techniques are reviewed. The abilities of each method in improving tensile, flexural, and compressive strength are discussed.
In the present work, we study how to improve mechanical properties of carbon fiber reinforced plastics (CFRP) in order to increase crashworthiness probability. Experimentally, hybrid carbon /glass fiber composite was made in order to get higher mechanical properties. As a results, with increasing carbon fiber volume fraction (% vol.), tensile strength and flexural strength of the composite are increased. Simulation of impact testing is also performed using data properties taken from the experiment with variation of impact forces on front bumper structure. By varying external load to the bumper, the result shows that higher thickness of hybrid carbon/glass fiber composite has always smaller stress values than thinner one. On the other hand, the displacement of hybrid carbon/glass car bumper increases linearly with increasing external load.
The effect of load and thickness variation on stress analysis of monocoque frame of electric city car using FEM AIP Conference Proceedings 1788, 030077 (2017) Abstract. This paper presents a simulation Finite Element Analysis (FEA) model of electric trike frames. The model of electric trike frame is a standard bicycle frame with addition modification on the back side for battery pack component and passenger loads. The electric motor is driven to put in front wheel for easy maintenance. Due to gain maximum safety in the passenger area and easy assembling, the frame is manufactured by circular steel tube in the front side and square steel tube in the back side. FEA simulation has been investigating proper model based on steel tube profile. The profiles is circular and oval steel tube 1.65mm thickness, (1, 1 ½, and 1 ½) inch diameter in front and square steel tube 2 mm thickness, (30x30, 40x40 and 50x50) mm size in the back. The support tube of the electric bicycle frame is similar to the National Standard road bicycle (SNI).The validation of this simulation is using experiment method and adaption method for optimizing iteration time and accuracy. The result of the simulation is a factor of safety. Von misses stress distribution from simulation result is showed the critical are in joining tube under driver of the frame structure. The oval tube is reached safety factor better than the circular tube, and it's had a better performance against the vertical load. The best variable is variable 3 oval tube 56.6x40 mm diagonal size with 1.65 thickness. It maximum passenger load is 700Kg. It can be a recommendation to redesign future frame of the electric bicycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.