Preparation of bismuth vanadate and cerium dioxide (BiVO4/CeO2) nanocomposites as visible-light photocatalysts was successfully obtained by coupling a homogeneous precipitation method with hydrothermal techniques. The BiVO4/CeO2 nanocomposites with different mole ratios were synthesized and characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Absorption range and band gap energy, which are responsible for the observed photocatalyst behavior, were investigated by UV-vis diffuse reflectance (UV-vis DR) spectroscopy. Photocatalytic activities of the prepared samples were examined by studying the degradation of model dyes Methylene Blue, Methyl Orange, and a mixture of Methylene Blue and Methyl Orange solutions under visible-light irradiation (>400 nm). Results clearly show that the BiVO4/CeO2 nanocomposite in a 0.6:0.4 mol ratio exhibited the highest photocatalytic activity in dye wastewater treatment.
Enhanced photocatalytic degradation of methylene blue (MB) using graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) catalyst films has been demonstrated in this present work. The g-C3N4/TiO2 composites were prepared by directly heating the mixture of melamine and pre-synthesized TiO2 nanoparticles in Ar gas flow. The g-C3N4 contents in the g-C3N4/TiO2 composites were varied as 0, 20, 50 and 70 wt%. It was found that the visible-light-induced photocatalytic degradation of MB was remarkably increased upon coupling TiO2 with g-C3N4 and the best degradation performance of ~70% was obtained from 50 wt% g-C3N4 loading content. Results from UV-vis absorption study, Electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggest that the improved photoactivity is due to a decrease in band gap energy, an increased light absorption in visible light region and possibly an enhanced electron-hole separation efficiency as a result of effective interfacial electron transfer between TiO2 and g-C3N4 of the g-C3N4/TiO2 composite film. Based on the obtained results, the possible MB degradation mechanism is ascribed mainly to the generation of active species induced by the photogenerated electrons.
Fully quantitative analyses of DRIFTS data are required when the surface concentrations and the specific rate constants of reaction (or desorption) of adsorbates are needed to validate microkinetic models. The relationship between the surface coverage of adsorbates and various functions derived from the signal collected by DRIFTS is discussed here. The Kubelka-Munk and pseudoabsorbance (noted here as absorbance, for the sake of brevity) transformations were considered, since those are the most commonly used functions when data collected by DRIFTS are reported. Theoretical calculations and experimental evidence based on the study of CO adsorption on Pt/SiO 2 and formate species adsorbed on Pt/CeO 2 showed that the absorbance (i.e., ) log 1/R′, with R′ ) relative reflectance) is the most appropriate, yet imperfect, function to give a linear representation of the adsorbate surface concentration in the examples treated here, for which the relative reflectance R′ is typically > 60%. When the adsorbates lead to a strong signal absorption (e.g., R′ < 60%), the Kubelka-Munk function is actually more appropriate. The absorbance allows a simple correction of baseline drifts, which often occur during time-resolved data collection over catalytic materials. Baseline corrections are markedly more complex in the case of the other mathematical transforms, including the function proposed by Matyshak and Krylov (Catal. Today 1995, 25, 1-87), which has been proposed as an appropriate representation of surface concentrations in DRIFTS spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.