Core regulatory transcription factors (CR TFs) orchestrate the placement of super-enhancers (SEs) to activate transcription of cell-identity specifying gene networks, and are critical in promoting cancer. Here, we define the core regulatory circuitry of rhabdomyosarcoma (RMS) and identify critical CR TF dependencies. These CR TFs build SEs that have the largest levels of histone acetylation, yet paradoxically SEs also harbor the highest amounts of histone deacetylases Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Pancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. The Rab27a GTPase is overexpressed in advanced cancers, can regulate vesicle trafficking, and has been previously linked to non-cell autonomous control of tumor growth and metastasis, however, the role of Rab27a itself in the metastatic propensity of pancreatic cancer is not well understood. Here, we have established a model to study how Rab27a directs formation of the pre-metastatic niche. Loss of Rab27a in pancreatic cancer cells did not decrease tumor growth in vivo, but resulted in altered systemic myeloid cell expansion, both in the primary tumors and at the distant organ sites. In metastasis assays, loss of Rab27a expression in tumor cells injected into circulation compromised efficient outgrowth of metastatic lesions. However, Rab27a knockdown cells had an unexpected advantage at initial steps of metastatic seeding, suggesting that Rab27a may alter cell-autonomous invasive properties of the tumor cells. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive. Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells.
Chromosomal passenger complex (CPC) has been demonstrated to be a potential target of cancer therapy by inhibiting Aurora B or survivin in different types of cancer including neuroblastoma. However, chemical inhibition of either Aurora B or survivin does not target CPC specifically due to off-target effects or CPC-independent activities of these two components. In a previous chromatin-focused siRNA screen, we found that neuroblastoma cells were particularly vulnerable to loss of INCENP, a gene encoding a key scaffolding component of the CPC. In this study, INCENP was highly expressed by neuroblastoma cells, and its expression decreased following retinoic acidinduced neuroblastoma differentiation. Elevated levels of INCENP were significantly associated with poor prognosis in primary tumors of neuroblastoma patients with high-risk disease. Genetic silencing of INCENP reduced the growth of both MYCN-wild-type and MYCN-amplified neuroblasto-ma cell lines in vitro and decreased the growth of neuroblastoma xenografts in vivo, with significant increases in murine survival. Mechanistically, INCENP depletion suppressed neuroblastoma cell growth by inducing polyploidization, apoptosis, and senescence. In most neuroblastoma cell lines tested in vitro, apoptosis was the primary cell fate after INCENP silencing due to induction of DNA damage response and activation of the p53-p21 axis. These results confirm that CPC is a therapeutic target in neuroblastoma, and targeting INCENP is a novel way to disrupt the activity of CPC and inhibit tumor progression in neuroblastoma.Significance: Dysregulation of INCENP contributes to neuroblastoma tumorigenesis and targeting INCENP presents a novel strategy to disrupt the activity of chromosomal passenger complex and inhibit neuroblastoma progression. INCENP encodes the inner centromere protein (INCENP), which is the structural and regulatory component of the chromosomal passenger complex (CPC) comprised of INCENP, survivin, Borealin, and the Aurora B kinase (9). CPC is responsible for proper chromosomal alignment, segregation, and cytokinesis during the mitosis (9). In the CPC, INCENP plays two critical roles: firstly, it functions as a scaffold protein coordinating assembly of this complex by interacting with all the other three components, and secondarily, the interaction between INCENP and Aurora B is necessary for activation of the Aurora B kinase, the catalytic subunit of this complex (9). Thus, disruption of INCENP expression leads to dissociation of the whole complex and limits Aurora B kinase activity (10, 11). Targeting the CPC has been led by strategies aimed at targeting survivin or Aurora B kinase in neuroblastoma because inhibition of either of them significantly blocks neuroblastoma tumor cell growth in vitro and xenograft growth in vivo (12-15). Recent genome-wide meta-analyses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.