We aimed to perform functional analysis of miR-145-5p in prostate cancer (PCa) cells and to identify targets of miR-145-5p for understanding its role in PCa pathogenesis. PC3, DU145, LNCaP PCa, and PNT1a nontumorigenic prostate cell lines were utilized for functional analysis of miR-145-5p. Its overexpression caused inhibition of proliferation through apoptosis and reduced migration in PCa cells. SOX2 expression was significantly decreased in both mRNA and protein level in miR-145-5p-overexpressed PCa cells. We proposed that miR-145-5p, being an important regulator of SOX2, carries a crucial role in PCa tumorigenesis.
Chordomas are one of the rarest bone tumors, and they originate from remnants of embryonic notochord along the spine, more frequently at the skull base and sacrum. Although they are relatively slow growing and low grade, chordomas are highly recurrent, aggressive, locally invasive, and prone to metastasize to the lungs, bone, and the liver. Chordomas highly and generally show a dual epithelial-mesenchymal differentiation. These tumors resist chemotherapy and radiotherapy; therefore, radical surgery and high-dose radiation are the most used treatments, although there is no standard way to treat the disease. The molecular biology process behind the initiation and progression of a chordoma needs to be revealed for a better understanding of the disease and to develop more effective therapies. Efforts to discover the mysteries of these molecular aspects have delineated several molecular and genetic alterations in this tumor. Here, we review and describe the emerging insights into the molecular landscape of chordomas.
Chordomas are rare bone tumors arising from remnants of the notochord. Molecular studies to determine the pathways involved in their pathogenesis and develop better treatments are limited. Alterations in microRNAs (miRNAs) play important roles in cancer. miRNAs are small RNA sequences that affect transcriptional and post-transcriptional regulation of gene expression in most eukaryotic organisms. Studies show that miRNA dysregulation is important for tumor initiation and progression. We compared the expression profile of miRNAs in chordomas to that of healthy nucleus pulposus samples to gain insight into the molecular pathogenesis of chordomas. Results of functional studies on one of the altered miRNAs, miR-31, are presented. The comparison between the miRNA profile of chordoma samples and the profile of normal nucleus pulposus samples suggests dysregulation of 53 miRNAs. Thirty miRNAs were upregulated in our tumor samples, while 23 were downregulated. Notably, hsa-miR-140-3p and hsa-miR-148a were upregulated in most chordomas relative to levels in nucleus pulposus cells. Two other miRNAs, hsa-miR-31 and hsa-miR-222, were downregulated in chordomas compared with the control group. Quantification with real-time polymerase chain reaction confirmed up or downregulation of these miRNAs among all samples. Functional analyses showed that hsa-miR-31 has an apoptotic effect on chordoma cells and downregulates the expression of c-MET and radixin. miRNA profiling showed that hsa-miR-31, hsa-miR-222, hsa-miR-140-3p and hsa-miR-148a are differentially expressed in chordomas compared with healthy nucleus pulposus. Our profiling may be the first step toward delineating the differential regulation of cancer-related genes in chordomas, helping to reveal the mechanisms of initiation and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.