This study reports the outcomes of a randomized control trial in algebra involving a national US sample. The primary research question examines an intervention consisting of two components: (1) professional development (PD) and (2) connected classroom technology (CCT) on student achievement. The theoretical framework emphasizes a sociocultural perspective that calls attention to the relationship between the affordances or the classroom learning opportunities and students' ability to take up these affordances in the service of learning. We forward the argument that CCT helps teachers to align the learning possibilities of their classroom with students' capacities leading to greater student achievement. The treatment group implemented CCT following PD to support its effective use and control teachers implemented graphing calculator technology only. The effect size on student achievement after accounting for background factors was 0.30. This medium-sized effect is relatively rare for randomized experiments in education.
The IoT is a sensors world that detects countless physical events in our environment and transforms them into data, and transfers this data to different environments or digital systems. The usage areas of Internet of things-based technologies are constantly increasing and technologies are being developed to support the IoT infrastructure. But, in order to effectively manage the large number of big-data generate in the detection layer, it should be pre-processed and done in accordance with big-data standards. For the effective management of big data, it is imperative to improving the standards of the data set, and filtering methods are being developed for a higher quality data set. For instance, using data cleaning methods is a preprocessing method that facilitates data mining operations. In this way, more manageable data is obtained by preventing the formation of interference and big data can be managed more effectively. In this study, we investigate the efficient operation of IoT and big data originating from the internet of things. Additionally, real-time anomalous data filtering is performed on IoT edges with a data set consisting of six different data produced in real- time. Furthermore, the speed and accuracy performances of classifiers are compared, and machine learning algorithms such as the random cut forest-RCF, logistic regression-LR, naive bayes-NB, and neural network-NN classifiers are used for comparison. According to the accuracy performance values, the RCF and LR classifiers are very close, but considering the speed values, it is seen that the LR classifier is more successful in IoT systems.
Industrialization and rapid urbanization in almost every country adversely affect many of our environmental values, such as our core ecosystem, regional climate differences and global diversity. The difficulties we encounter as a result of the rapid change we experience cause us to encounter many problems in our daily lives. The background of these problems is rapid digitalization and the lack of sufficient infrastructure to process and analyze very large volumes of data. Inaccurate, incomplete or irrelevant data produced in the IoT detection layer causes weather forecast reports to drift away from the concepts of accuracy and reliability, and as a result, activities based on weather forecasting are disrupted. A sophisticated and difficult talent, weather forecasting needs the observation and processing of enormous volumes of data. In addition, rapid urbanization, abrupt climate changes and mass digitization make it more difficult for the forecasts to be accurate and reliable. Increasing data density and rapid urbanization and digitalization make it difficult for the forecasts to be accurate and reliable. This situation prevents people from taking precautions against bad weather conditions in cities and rural areas and turns into a vital problem. In this study, an intelligent anomaly detection approach is presented to minimize the weather forecasting problems that arise as a result of rapid urbanization and mass digitalization. The proposed solutions cover data processing at the edge of the IoT and include filtering out the missing, unnecessary or anomaly data that prevent the predictions from being more accurate and reliable from the data obtained through the sensors. Anomaly detection metrics of five different machine learning (ML) algorithms, including support vector classifier (SVC), Adaboost, logistic regression (LR), naive Bayes (NB) and random forest (RF), were also compared in the study. These algorithms were used to create a data stream using the time, temperature, pressure, humidity and other sensor-generated information.
No abstract
Ontologies have often been recommended for E-learning systems, but few efforts have successfully incorporated student data to represent knowledge conceptualizations. Defining key concepts and their relations between each other establishes the backbone of our E-learning system. The system guides an individual student through his/her course by evaluating their progress and suggesting instructional material to review based upon their answers. Three main tasks are performed within this framework: building ontologies for the course, measuring a student's understanding level for the concepts, and making personal suggestions to create an individualized learning environment. This paper presents: the integration of ontologies, assisted with student data, together with an intelligent Recommendation Module for the development of an E-learning system; the comparison and correction adaption of ontology from students' mind maps; and the assessment of students' actual weaknesses in comparison to what Recommendation Module suggests. The sample of 127 students, five classrooms, was conveniently selected among seventh grade students of a demographically average school in a major city in Turkey. The students' achievement was assessed and the scores for different questions were investigated for associations with concepts made in the students' minds. The results provided significant correlations among scores, and a fit model for the concepts represented by questions. The student suggested model slightly differed from the ontology map from the experts. Based on the data-supported model, the Recommendation Module more accurately determined the students' learning deficiencies and suggested concepts to be reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.