The remarkable advancements in biotechnology and public healthcare infrastructures have led to a momentous production of critical and sensitive healthcare data. By applying intelligent data analysis techniques, many interesting patterns are identified for the early and onset detection and prevention of several fatal diseases. Diabetes mellitus is an extremely life-threatening disease because it contributes to other lethal diseases, i.e., heart, kidney, and nerve damage. In this paper, a machine learning based approach has been proposed for the classification, early-stage identification, and prediction of diabetes. Furthermore, it also presents an IoT-based hypothetical diabetes monitoring system for a healthy and affected person to monitor his blood glucose (BG) level. For diabetes classification, three different classifiers have been employed, i.e., random forest (RF), multilayer perceptron (MLP), and logistic regression (LR). For predictive analysis, we have employed long short-term memory (LSTM), moving averages (MA), and linear regression (LR). For experimental evaluation, a benchmark PIMA Indian Diabetes dataset is used. During the analysis, it is observed that MLP outperforms other classifiers with 86.08% of accuracy and LSTM improves the significant prediction with 87.26% accuracy of diabetes. Moreover, a comparative analysis of the proposed approach is also performed with existing state-of-the-art techniques, demonstrating the adaptability of the proposed approach in many public healthcare applications.
With the expansion and acceptance of Word Wide Web, sentiment analysis has become progressively popular research area in information retrieval and web data analysis. Due to the huge amount of user-generated contents over blogs, forums, social media, etc., sentiment analysis has attracted researchers both in academia and industry, since it deals with the extraction of opinions and sentiments. In this paper, we have presented a review of topic modeling, especially LDA-based techniques, in sentiment analysis. We have presented a detailed analysis of diverse approaches and techniques, and compared the accuracy of different systems among them. The results of different approaches have been summarized, analyzed and presented in a sophisticated fashion. This is the really effort to explore different topic modeling techniques in the capacity of sentiment analysis and imparting a comprehensive comparison among them.
PurposeIn today's constantly changing workplace, leaders encounter new challenges consequent to rising digitization. Tackling these problems effectively requires digital leadership, a prominent idea in discussions about what abilities the managers need to be developed in the digital age. The study analyses the leadership elements needed and determines the impact of digital leadership on sustainable performance. The aim of this systematic literature review (SLR) is to identify the relationship between digital leadership concepts and leadership development by proposing digital leadership for management development to ensure sustainable performance in an organisation.Design/methodology/approachROSES (RepOrting Standards for Systematics Evidence Syntheses) was used as the publication standard for this systematic literature review, which incorporated a variety of research approaches. For this study's article selection, one of the most important scientific databases, Scopus, was used. Only articles published between 2001 and 2021 were reviewed. The focus of the article was on digital leadership and performance.FindingsThis review identified five main themes: leadership styles, measurements of leadership, antecedents to good leadership, outcomes of good leadership and gaps in current research areas. An additional ten sub-themes were derived from the five primary topics.Originality/valueThis paper systematically reviewed two decades of literature related to digital leadership and its impact on sustainable performance. The findings allow leaders to better understand the leadership trend and develop appropriate leadership practices to overcome future challenges for sustainable performance.
The primary objective of this study is to accumulate, summarize, and evaluate the state-ofthe-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.