Hepatic resection is the most curative treatment option for early-stage hepatocellular carcinoma, but is associated with a high recurrence rate, which exceeds 50% at 5 years after surgery. Understanding the genetic basis of hepatocellular carcinoma at surgically curable stages may enable the identification of new molecular biomarkers that accurately identify patients in need of additional early therapeutic interventions. Whole exome sequencing and copy number analysis was performed on 231 hepatocellular carcinomas (72% with hepatitis B viral infection) that were classified as early-stage hepatocellular carcinomas, candidates for surgical resection. Recurrent mutations were validated by Sanger sequencing. Unsupervised genomic analyses identified an association between specific genetic aberrations and postoperative clinical outcomes. Recurrent somatic mutations were identified in nine genes, including TP53, CTNNB1, AXIN1, RPS6KA3, and RB1. Recurrent homozygous deletions in FAM123A, RB1, and CDKN2A, and high-copy amplifications in MYC, RSPO2, CCND1, and FGF19 were detected. Pathway analyses of these genes revealed aberrations in the p53, Wnt, PIK3/Ras, cell cycle, and chromatin remodeling pathways. RB1 mutations were significantly associated with cancer-specific and recurrence-free survival after resection (multivariate P 5 0.038 and P 5 0.012, respectively). FGF19 amplifications, known to activate Wnt signaling, were mutually exclusive with CTNNB1 and AXIN1 mutations, and significantly associated with cirrhosis (P 5 0.017). Conclusion: RB1 mutations can be used as a prognostic molecular biomarker for resectable hepatocellular carcinoma. Further study is required to investigate the potential role of FGF19 amplification in driving hepatocarcinogenesis in patients with liver cirrhosis and to investigate the potential of anti-FGF19 treatment in these patients. (HEPATOLOGY 2014;60:1972-1982 See Editorial on Page 1812 H epatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and exhibits the third highest mortality rate. Recent
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.
Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy, which involves enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction; however, a direct link between depotentiation and extinction has not yet been tested. To address this issue, we applied both ex vivo and in vivo approaches to rats in which fear memory had been consolidated. A unique form of depotentiation reversed conditioning-induced potentiation at thalamic input synapses onto the LA (T-LA synapses) ex vivo. Extinction returned the enhanced T-LA synaptic efficacy observed in conditioned rats to baseline and occluded the depotentiation. Consistently, extinction reversed conditioning-induced enhancement of surface expression of AMPAR subunits in LA synaptosomal preparations. A GluR2-derived peptide that blocks regulated AMPAR endocytosis inhibited depotentiation, and microinjection of a cell-permeable form of the peptide into the LA attenuated extinction. Our results are consistent with the use of depotentiation to weaken potentiated synaptic inputs onto the LA during extinction and provide strong evidence that AMPAR removal at excitatory synapses in the LA underlies extinction.lateral amygdala ͉ fear conditioning ͉ AMPA receptor ͉ endocytosis T he cortical and thalamic input synapses onto the lateral amygdala (LA) (C-LA and T-LA synapses, respectively) carry auditory information from the auditory cortex and auditory thalamus onto the LA, respectively (1). Long-term potentiation (LTP; an in vitro model of memory) (2)-like changes in these pathways are thought to underlie both the encoding and consolidation of auditory fear memory (3-8). The results of a recent study suggest that long-term retention of conditioning-induced potentiation at excitatory synapses in the LA is a critical requirement for consolidated fear memory within the LA (7, 9). Also, LTP requiring the synaptic delivery of AMPA receptors (AMPARs) at excitatory synapses in the LA appears to be necessary for establishing consolidated fear memory (6,8,10). Conditioning-induced potentiation and auditory fear memory encoded in the LA have been shown to be consolidated within 24 h after fear conditioning (5, 7, 11). Moreover, auditory fear memory appears to be maintained in the LA across the adult lifetime of rats (12). Thus, consolidation of auditory fear memory encoded in the LA is rapid and localized, unlike hippocampus-dependent memory, which involves slow and distributed consolidation processes (13).In the present study, we tested the hypothesis that depotentiation of conditioning-induced potentiation at excitatory synapses in the LA underlies extinction of consolidated fear memory. Synaptic weights were monitored ex vivo by using whole-cell (or field potential) recordings in amygdala slices prepared from behaviortrained rats. Results Extinction of Consolidated ...
Glucocorticoid (GC) is an adrenal steroid with diverse physiological effects. It undergoes a robust daily oscillation, which has been thought to be driven by the master circadian clock in the suprachiasmatic nucleus of the hypothalamus via the hypothalamuspituitary-adrenal axis. However, we show that the adrenal gland has its own clock and that the peripheral clockwork is tightly linked to steroidogenesis by the steroidogenic acute regulatory protein.Examination of mice with adrenal-specific knockdown of the canonical clock protein BMAL1 reveals that the adrenal clock machinery is required for circadian GC production. Furthermore, behavioral rhythmicity is drastically affected in these animals, together with altered expression of Period1, but not Period2, in several peripheral organs. We conclude that the adrenal peripheral clock plays an essential role in harmonizing the mammalian circadian timing system by generating a robust circadian GC rhythm.adrenal gland ͉ steroidogenic acute regulatory protein ͉ BMAL1
Calcium/calmodulin-dependent protein kinase II (CaMKII) undergoes calcium-dependent autophosphorylation, generating a calcium-independent form that may serve as a molecular substrate for memory. Here we show that calcium-independent CaMKII specifically binds to isolated postsynaptic densities (PSDs), leading to enhanced phosphorylation of many PSD proteins including the ␣-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-type glutamate receptor. Furthermore, binding to PSDs changes CaMKII from a substrate for protein phosphatase 2A to a protein phosphatase 1 substrate. Translocation of CaMKII to PSDs occurs in hippocampal slices following treatments that induce CaMKII autophosphorylation and a form of long term potentiation. Thus, synaptic activation leads to accumulation of autophosphorylated, activated CaMKII in the PSD. This increases substrate phosphorylation and affects regulation of the kinase by protein phosphatases, which may contribute to enhancement of synaptic strength.CaMKII 1 isoforms comprise a family of broad specificity, calcium-activated kinases (1, 2). The ␣ and  isoforms are abundantly expressed in the brain, with ␣ making up as much as 2% of total protein in certain brain regions (3). CaMKII is particularly enriched in PSDs (4, 5), cytoskeletal specializations apposed to the postsynaptic membrane of excitatory synapses that are thought to be scaffolds for neurotransmitter receptors, ion channels, and their postsynaptic modulators and effectors (reviewed in Refs. 6 and 7). Earlier reports suggested that CaMKII␣ constitutes as much as 50% of total PSD protein (8 -10), but PSDs prepared from rapidly homogenized brains are only 2-3-fold enriched in CaMKII␣ compared with whole forebrain extracts (3,11). CaMKII␣ knockout mice show impaired hippocampal long term potentiation, a cellular model for learning and memory (12). Conversely, introduction of CaMKII␣ into neurons augments postsynaptic responses and occludes further electrically induced long term potentiation (13,14).CaMKII␣ undergoes calcium/calmodulin-dependent autophosphorylation on Thr 286 in its regulatory domain, rendering the kinase partially calcium-independent (1, 2). This reaction has been proposed as a "molecular switch," translating transient calcium elevation into prolonged kinase activity (15, 16), which becomes subject to regulation by protein phosphatases. (19).Isolation of PSDs-PSDs were prepared from adult rat forebrains flash frozen within 45 s of euthanasia by detergent lysis of synaptosomes (20) except that 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, and 10 g/ml leupeptin were included in all buffers. Synaptosomes were lysed in 1% (v/v) Triton X-100 and 150 mM KCl, and a second subsequent sucrose gradient was omitted because it yielded no further purification. PSDs displayed typical "donut" morphology by video-enhanced differential-interference contrast microscopy (21). PSDs prepared in the absence or the presence of the protein phosphatase inhibitor microcystin-LR (1 M) contained ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.