While a number of studies have documented the importance of microglia in central nervous system (CNS) response to injury, infection and disease, little is known regarding its role in viral encephalitis. We therefore, exploited an experimental model of Japanese Encephalitis, to better understand the role played by microglia in Japanese Encephalitis Virus (JEV) infection. Lectin staining performed to assess microglial activation indicated a robust increase in reactive microglia following infection. A difference in the topographic distribution of activated, resting, and phagocytic microglia was also observed. The levels of various proinflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2), IL-6, IL-1beta, TNF-alpha, and MCP-1 that have been implicated in microglial response to an activational state was significantly elevated following infection. These cytokines exhibited region selective expression in the brains of infected animals, with the highest expression observed in the hippocampus. Moreover, the expression of neuronal specific nuclear protein NeuN was markedly downregulated during progressive infection indicating neuronal loss. In vitro studies further confirmed that microglial activation and subsequent release of various proinflammatory mediators induces neuronal death following JEV infection. Although initiation of immune responses by microglial cells is an important protective mechanism in the CNS, unrestrained inflammatory responses may result in irreparable brain damage. Our findings suggest that the increased microglial activation following JEV infection influences the outcome of viral pathogenesis. It is likely that the increased microglial activation triggers bystander damage, as the animals eventually succumb to infection.
Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapsespecific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single β-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcodebinding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of β-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines.single molecule | glutamate uncaging | β-actin | RNA localization | HaloTag S ubcellular localization of mRNA allows control of protein synthesis with respect to space and time (1). By sorting mRNAs to their respective compartments, neurons can regulate translation in response to extracellular signal at the place of protein function (2). Many mRNAs have been shown to be present in dendrites and axons (3), and efforts to characterize mRNA transport revealed that depolarization can lead to detectable increases in alpha calcium calmodulin kinase II (αCaMKII), BDNF, or β-actin mRNAs in dendrites (4-6). Likewise, studies in local translation have shown that dendrites can synthesize the necessary complement of proteins for synaptic plasticity (7). Furthermore, electron microscopy observations of polyribosomes within dendrites and synaptic spines have confirmed that translation occurs readily in neuronal subdomains far from the soma (8, 9). The development and use of fluorescent protein-based translation reporters were pivotal in visualizing local translational output within dendrites (10-12). However, missing from these findings was the high-resolution detection of spatial and kinetic events that result in dynamic repositioning of individual mRNAs and translated proteins within dendrites in response to locally defined input.Actin is the major cytoskeletal component of dendritic spines where filamentous actin (F-actin) dynamics confer motility and structural plasticity (13). Interestingly, the mRNA that encodes for the most abundant actin isoform in neurons, β-actin, is also present in dendrites in relatively large numbers (3). Similar to β-actin, the mRNAs for PSD-95 and αCaMKII (among many) also are found at high levels, with the latter considered one of the most abundant mRNAs in dendrites. Why such abundant synaptic proteins need ...
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Any pathological perturbation to the brain provokes a cascade of molecular and cellular events, which manifests in the form of microglial activation and release of various proinflammatory molecules. This eventually culminates in a profound neuroinflammatory reaction that characterizes the brain's response to stress, injury, or infection. The inflammatory cascade is an attempt by the system to eliminate the challenge imposed on the brain, clear the system of the dead and damaged neurons, and rescue the normal functioning of this vital organ. However, during the process of microglial activation, the proinflammatory mediators released exert certain detrimental effects, and neural stem cells and progenitor cells are likely to be affected. Here we review how the proliferation, maturation, and migration of the neural stem cells are modulated under such an inflammatory condition. The fate of the noncommitted neural stem cells and its differentiation potency are often under strict regulation, and these proinflammatory mediators seem to disrupt this critical balance and finely tune the neurogenesis pattern in the two niches of neurogenesis, the subventricular zone and the subgranular zone of the hippocampus. Moreover, the migration ability of these stem cells, which is important for localization to the proper site, is also affected in a major way by the chemokines released following inflammation.
BackgroundActivation of microglia, the resident macrophages of the central nervous system (CNS), is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB) is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2) and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4), one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation.MethodsFor in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS). Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs). Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA) were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors.ResultsLPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown. We found that Klf4 can potentially interact with pNF-κB and is important for iNOS and Cox-2 promoter activity in vitro.ConclusionsThese studies demonstrate the role of Klf4 in microglia in mediating neuroinflammation in response to the bacterial endotoxin LPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.