The wealth of Social Big Data(SBD) represents a unique opportunity for organisations to obtain the excessive use of such data abundance to increase their revenues. Hence, there is an imperative need to capture, load, store, process, analyse, transform, interpret, and visualise such manifold social datasets to develop meaningful insights that are specific to an application's domain. This paper lays the theoretical background by introducing the state-ofthe-art literature review of the research topic. This is associated with a critical evaluation of the current approaches, and fortified with certain recommendations indicated to bridge the research gap.
This study aims to determine the benefits, risks, awareness, cultural factors, and sustainability, allied to social networking (SN) use in the higher education (HE) sector in Middle Eastern countries, namely Jordan, Saudi Arabia, and Turkey. Using an online survey, 1180 complete responses were collected and analyzed using the statistical confirmatory factor analysis method. The use of SN in the Middle Eastern HE sector has the capacity to promote and motivate students to acquire professional and personal skills for their studies and future workplace; however, the use of SN by tertiary students is also associated with several risks: isolation, depression, privacy, and security. Furthermore, culture is influenced by using SN use, since some countries shifted from one dimension to another based on Hofstede's cultural framework. The study new findings are based on a sample at a specific point in time within a culture. The study findings encourage academics to include SN in unit activities and assessments to reap the benefits of SN, while taking steps to mitigate any risks that SN poses to students. Although other studies in the Middle East examined the use of Learning Management System and Facebook in, HE as a means of engaging students in discussions and communications, however, this study contributes a better understanding of the benefits and risks, awareness, culture, and sustainability, associated with the use of SN in the HE sector in the Middle East. Finally, the paper concludes with an acknowledgment of the study limitations and suggestions for future research.
Social networking (SN) technology has been presented to human beings as a means of communicating, collaborating, connecting, and cooperating to exchange knowledge, skills, news, chat, and to maintain contact with peers world-wide. This article examines SN awareness in the Asia-Pacific (AP) education sector (ES) with a specific focus on the advantages and disadvantages of SN; and investigated whether AP culture influences SN adoption by the ES. An online survey was distributed to 1014 AP students and a total of 826 students responded. Several new advantages of adoption emerged from the data analysis. SN enabled students to accomplish their study tasks more quickly; it allowed them to communicate and collaborate with peers world-wide; and it fostered sustainability. The disadvantages perceived by students include depression, loneliness, and distraction, lack of interest in pursuing traditional activities, and security and privacy concerns. Finally, culture does influence SN adoption by ES institutions in AP countries.
The communication revolution has perpetually reshaped the means through which people send and receive information. Social media is an important pillar of this revolution and has brought profound changes to various aspects of our lives. However, the open environment and popularity of these platforms inaugurate windows of opportunities for various cyber threats, thus social networks have become a fertile venue for spammers and other illegitimate users to execute their malicious activities. These activities include phishing hot and trendy topics and posting a wide range of contents in many topics. Hence, it is crucial to continuously introduce new techniques and approaches to detect and stop this category of users. This article proposes a novel and effective approach to detect social spammers. An investigation into several attributes to measure topic-dependent and topic-independent users’ behaviours on Twitter is carried out. The experiments of this study are undertaken on various machine learning classifiers. The performance of these classifiers is compared and their effectiveness is measured via a number of robust evaluation measures. Furthermore, the proposed approach is benchmarked against state-of-the-art social spam and anomalous detection techniques. These experiments report the effectiveness and utility of the proposed approach and embedded modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.