We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representative task where classification needs to be performed using small training datasets — a regime that has been suggested for a quantum advantage. We find that Classical Machine Learning (CML) benchmarks outperform standard QML algorithms and are able to automatically identify the presence of anomalous events injected into otherwise background-only datasets.
Quantum Machine Learning (QML) is an exciting tool that has received significant recent attention due in part to advances in quantum computing hardware. While there is currently no formal guarantee that QML is superior to classical ML for relevant problems, there have been many claims of an empirical advantage with high energy physics datasets. These studies typically do not claim an exponential speedup in training, but instead usually focus on an improved performance with limited training data. We explore an analysis that is characterized by a low statistics dataset. In particular, we study an anomaly detection task in the four-lepton final state at the Large Hadron Collider that is limited by a small dataset. We explore the application of QML in a semi-supervised mode to look for new physics without specifying a particular signal model hypothesis. We find no evidence that QML provides any advantage over classical ML. It could be that a case where QML is superior to classical ML for collider physics will be established in the future, but for now, classical ML is a powerful tool that will continue to expand the science of the LHC and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.