The major challenge being faced by the financial related institutions, such as e-Commerce has been insecurity. Therefore, there is urgent need to develop a scheme to protect transmitted financial information or messages from getting to the third party, intruder and/or unauthorized person(s). Such scheme will be based on Advanced Encryption Standard (AES) and Neural Data Security (NDS) Model. Based on this background, an AES using Time-based Dynamic Key Generation coupled with NDS model will be used to develop security model for preventing e-commerce related crimes. While AES will secure users’ details in the database server and ensures login authentications, NDS model will fragment or partition sensitive data into High and Low levels of confidentiality. The sensitivity of the data will determine, which category of confidentiality the data will fall into. The fragmented data are saved into two different databases, on two different servers and on the same datacenter. In addition, an exploratory survey was carried out using different performance metrics with different classifications of algorithms. Out of the four algorithms considered, Naive Bayes performs better as it shows, out of a total of 105 instances that were observed, 85.71% were correctly classified while 14.29% were misclassified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.