Thousands of scientific publications discuss evidence on the efficacy of non-cancer generic drugs being tested for cancer. However, trying to manually identify and extract such evidence is intractable at scale. We introduce a natural language processing pipeline to automate the identification of relevant studies and facilitate the extraction of therapeutic associations between generic drugs and cancers from PubMed abstracts. We annotate datasets of drug-cancer evidence and use them to train models to identify and characterize such evidence at scale. To make this evidence readily consumable, we incorporate the results of the models in a web application that allows users to browse documents and their extracted evidence. Users can provide feedback on the quality of the evidence extracted by our models. This feedback is used to improve our datasets and the corresponding models in a continuous integration system. We describe the natural language processing pipeline in our application and the steps required to deploy services based on the machine learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.