This study covers new trends and techniques in the field of predictive maintenance, which has been superseding traditional management policies, at least in part. It also presents suggestions for how to implement a predictive maintenance programme in a factory/premise and so on. Predictive maintenance primarily involves foreseeing breakdown of the system to be maintained by detecting early signs of failure in order to make maintenance work more proactive. In addition to the aim of acting before failure, it also aims to attend to any fault, even if there is no immediate danger of failure, to ensure smooth operation and reduce energy consumption. Predictive maintenance has been adopted by various sectors in manufacturing and service industries in order to improve reliability, safety, availability, efficiency and quality as well as to protect the environment. It also has created a separate sector, which specializes in developing predictive maintenance instruments, offering dedicated predictive maintenance solutions and training predictive maintenance experts. Predictive maintenance techniques are closely associated with sensor technologies but for efficient predictive maintenance applications, a comprehensive approach, which integrates sensing with subsequent maintenance activities, is needed to be adapted in accordance with the needs of the particular organization. Recent advances in information, communication and computer technologies, such as Internet of Things and radio-frequency identifications, have been enabling predictive maintenance applications to be more efficient, applicable, affordable, and consequently more common and available for all sorts of industries. Researches on remote maintenance and e-maintenance have been supporting predictive maintenance activities especially in unsafe working environments and scattered locations.
Fibrous materials obtained from natural polymers, such as gelatin, have been used in medical applications due to their biocompatibility and biodegradability. Herein, free‐standing durable fibrous gelatin biomats with antibacterial activity were developed via a simple, low cost and fast production route, centrifugal spinning, and subsequent thermal crosslinking. After a series of preliminary experiments, droplet−/bead‐free porous biomats with fine fibers, 3.41 ± 1.8 μm in diameter, were fabricated. Subsequently, antimicrobial biomats were produced by adding AgNO3 into the production solution. X‐ray diffractometer and energy dispersive X‐ray results showed Ag NPs existing as AgCl in the biomats, which could be attributed to chemical reaction between the Ag NPs and residual Cl in the impure gelatin. Later, both the neat‐gelatin and Ag‐gelatin biomats were thermally crosslinked at 170°C to gain stability against water. Although the Ag addition reduced ultimate tensile strength by half, from 881 to 495 kPa, the crosslinked biomats were robust enough to be used for wound dressing applications. They were also found to be highly breathable, with the air permeability of 256 and 81.2 mm/s, respectively. The biomats showed antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. The results show that the free‐standing fibrous‐gelatin‐based biomats produced is applicable for wound dressing applications.
In this study, polyvinylpyrrolidone-based nanofibrous air filter media were produced via centrifugal spinning and subsequently stabilized by thermal cross-linking process. Samples were produced using solutions with three different polymer concentrations (5, 10 and 20 wt.%) and three different rotational speeds (4000, 6000 and 8000 r/min). After obtaining the optimum web structure with the lowest average fiber diameter and the most uniform distribution, the webs were later thermally cross-linked in order to stabilize polyvinylpyrrolidone against the degradative effects of water. In addition, the webs were subjected to dissolvability tests to see the efficacy of cross-linking treatment. Morphological, structural and chemical characterizations of the polyvinylpyrrolidone webs were performed by SEM, XRD and FTIR, respectively. Finally, filter efficiency and pressure drop were measured to assess filter performance. The results have shown that the lowest average fiber diameter is obtained at the highest rotational speeds. Subsequent thermal cross-linking treatment has been found to prevent fibers from dissolving in water. The produced water-resistant, environmentally friendly polyvinylpyrrolidone nanofibrous filter media has had a satisfactory filtration performance with a high filter efficiency of 99.995% and a high quality factor of 0.39 mm H2O−1.
A bimodal web, where both nanofibers and microfibers are present and distributed randomly across the same web, can deliver high filter efficiency and low pressure drop at the same time since in such a web, filter efficiency is high thanks to small pores created by the presence of nanofibers and the interfiber space created by the presence of microfibers, which is large enough for air to flow through with little resistance. In this work, a bimodal polyamide 6 (PA6) filter web was fabricated via a modified solution blowing (m-SB) technique that produced nanofibers and microfibers simultaneously. Scanning electron microscope (SEM) images of the webs were used to analyze the fiber morphology. Additionally, air permeability, solidity, porosity, filtration performance, and tensile strength of the samples were measured. The bimodal filter web consisted of nanofibers and microfibers with average diameters of 81.5 ± 127 nm and 1.6 ± 0.458 μm, respectively. Its filter efficiency, pressure drop at 95 L min–1, and tensile strength were 98.891%, 168 Pa, and 0.1 MPa, respectively. Its quality factor (QF) and tensile strength were 0.0268 Pa–1 and 0.1 MPa, respectively. When compared with commercially available filters, the bimodal web produced had superior filter performance, constituting a suitable alternative for air filter applications.
As it is the case for production and service sectors, one of the key ways for a logistics company to create sustainable competitive advantage is to differentiate itself from the rest with the quality that it offers. Researchers and practitioners have developed various quality improvement policies for logistics service providers and each of the policies addresses certain aspects of the business. This study individually evaluates the major quality approaches involved in an attempt to explore prospects of combining them in a way to maximize the benefit of their implementation. To promote applicability the quality approaches are analyzed from the perspective of customers as well as that of implementers of quality programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.