This paper presents a semantically rich document representation model for automatically classifying financial documents into predefined categories utilizing deep learning. The model architecture consists of two main modules including document representation and document classification. In the first module, a document is enriched with semantics using background knowledge provided by an ontology and through the acquisition of its relevant terminology. Acquisition of terminology integrated to the ontology extends the capabilities of semantically rich document representations with an in depth-coverage of concepts, thereby capturing the whole conceptualization involved in documents. Semantically rich representations obtained from the first module will serve as input to the document classification module which aims at finding the most appropriate category for that document through deep learning. Three different deep learning networks each belonging to a different category of machine learning techniques for ontological document classification using a real-life ontology are used.Multiple simulations are carried out with various deep neural networks configurations, and our findings reveal that a three hidden layer feedforward network with 1024 neurons obtain the highest document classification performance on the INFUSE dataset. The performance in terms of F1 score is further increased by almost five percentage points to 78.10% for the same network configuration when the relevant terminology integrated to the ontology is applied to enrich document representation. Furthermore, we conducted a comparative performance evaluation using various state-of-the-art document representation approaches and classification techniques including shallow and conventional machine learning classifiers.
During video-guided minimally invasive surgery, quality of frames may be degraded severely by cauterization-induced smoke and condensation of vapor. This degradation of quality creates discomfort for the operating surgeon, and causes serious problems for automatic follow-up processes such as registration, segmentation and tracking. This paper proposes a novel deep neural network based smoke removal solution that is able to enhance the quality of surgery video frames in real-time. It employs synthetically generated training dataset including smoke embedded and clean reference versions. Results calculated on the test set indicate that our network outperforms previous defogging methods in terms of quantitative and qualitative measures. While eliminating apparent smoke, it also successfully preserves the natural appearance of tissue surface. To the best of our knowledge, the presented method is the first deep neural network based approach for the surgical field smoke removal problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.