The current article studied a nonlinear transmission of the nerve impulse model, the Fitzhugh–Nagumo (FN) model, in the conformable fractional form with an efficient analytical approach based on a combination of conformable Sumudu transform and the Adomian decomposition method. Convergence analysis and error analysis were also carried out based on the Banach fixed point theory. We also provided some examples to support our results. The results obtained revealed that the presented approach is very fantastic, effective, reliable, and is an easy method to handle specific problems in various fields of applied sciences and engineering. The Mathematica software carried out all the computations and graphics in this paper.
Recently, non-linear fractional partial differential equations are used to model many phenomena in applied sciences and engineering. In this study, the modified simple equation scheme is implemented to obtain some new traveling wave solutions of the non-linear conformable time-fractional approximate long water wave equation and the non-linear conformable coupled time-fractional Boussinesq-Burger equation, which are used in the expression of shallow-water waves. The time- fractional derivatives are described in terms of conformable fractional derivative sense. Consequently, new exact traveling wave solutions of both equations are achieved. The graphics and correctness of the wave solutions are obtained with the Mathematica package program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.