Transportable boiler plants are widespread in the northern regions of the Russian Federation and have a large and stable demand in various spheres of life. The equipment used and the schemes of existing boiler plants are outdated—they require replacement and modernization. Our proposed new installation includes a coil type steam boiler and ancillary equipment designed with the identified deficiencies in mind. The steam boiler coils are coaxial cylinders. The scope of the modernized transportable boiler plant is an oil field in the subarctic continental climate. The work is aimed at completing an experimental and theoretical study of the operation of a coil type steam boilers under real operating conditions. Experimental data on the operation of boiler plants are presented. The dependences of the fuel consumption of boiler plants on the temperature and pressure of the coolant are obtained. Statistical analysis is applied to the collected data. Conclusions are formulated and a promising direction is laid out for further research and improvement of coil type steam boilers. Equations are proposed for calculating the convective component of radiant-convective heat transfer in gas ducts, taking into account the design features of boiler units by introducing new correction factors. Comparison of the calculated and experimental data showed their satisfactory agreement.
A mathematical model of the vaporization process in the coil is developed, taking into account the experimental data. To investigate and visualize the evaporation procedure in the coil, a mathematical pattern of the vapor-liquid mixture motion is compiled and reproduced. In the methodology of the study of the movement of the steam-water mixture, correction coefficients are proposed for calculating the velocities of the coolant in non-standard coaxial coils. The parameters were calculated using data sensitivity analysis and data validation was performed by repeated tests; uncertainty was detected when using the instruments, as well as the total extended uncertainty, the upper and lower limit of uncertainty for each measured parameter. In addition, as part of the steam generator set, solar collectors operate in the summer mode. Using the example of the studied steam generator operating in the conditions of an oil and gas field in the subarctic climate, it is shown that it is possible to use air-type solar collectors for the ventilation system of the production room, as well as water-heating solar collectors for technical systems of hot water supply and chemical water treatment.
The training laboratory stand was created to simulate the operation of a direct-flow boiler, in order to study the hydraulic and thermophysical processes occurring in such devices. Having studied the hydrodynamics of the coolant in a cylindrical composite coil, it is possible to influence the steam capacity of the boiler, improve its energy efficiency. For educational purposes, the student can study the flow modes of liquid and air, learn how to control electrical equipment, master the operation of shut-off valves and parting devices for measuring flow, temperature and pressure. The purpose of the work is to design, create and launch an educational laboratory stand that allows you to reproduce the hydraulic and aerodynamic modes of operation of a direct-flow steam boiler of a coil type without heating the coolant. Methods. For the design, a model of a real coil-type steam boiler was taken as a basis and adapted to the operating conditions for laboratory work. Results. As a result, thermal mechanical schemes of hydraulic and aerodynamic systems, the algorithm of the hydraulic system, the automation scheme, as well as a list of selected equipment and photos of the assembled laboratory stand are presented. Conclusion. Modern automation devices can make it possible to take readings of the coolant and air with high accuracy, as well as transfer experimental values to a personal computer for data storage and subsequent analysis. The educational laboratory stand will allow for an in-depth study of hydraulic and aerodynamic processes in a direct-flow steam boiler of the coil type, the processes of change and occurrence of laminar and turbulent modes, as well as their impact on improving the energy efficiency of the boilers in question, and in the future on separate heat exchange equipment.
The different devices for various purposes and designs are used in the food industry. The article discusses the option of using a new type of a heat exchanger together with a steam generator. Such combined devices are called energy-technological complexes. In particular, it is possible to use alternative fuels, namely mixtures of biogas and coal water slurry for steam production. The wet grain is dried in a heat exchanger using technological steam. Thus, when manufacturing products, it becomes possible to save energy resources, as well as the use of secondary or alternative fuels, which significantly increases the efficiency of the energy-technological complex.
This article analyzes the current situation in the heating circuit of the boiler room. Nowadays the Taiginsky enterprise proposes to modernize the heat supply system. For the first time, the dual circuit scheme is applied instead of a three circuit scheme. The scheme was developed instead of the existing boiler room scheme. There is also a description of the main equipment of the boiler. A hydraulic calculation was performed and a piezometric graph of the existing and proposed schemes was built. In addition, there is the heat calculation of fire-tube boiler and calculated technological losses during the transfer of heat energy to consumers. The calculation of the main technical and economic indicators is given in the economic part. The protection system of boiler units from mechanical and chemical influences is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.