Background Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Recently, zirconium oxide nanoparticles (nano-ZrO 2 ) have been added to improve some properties of PMMA, but their effect on the optical properties and tensile strength are neglected. Objective The aim of this study was to investigate the effect of nano-ZrO 2 addition on the translucency and tensile strength of the PMMA denture base material. Materials and methods Eighty specimens (40 dumbbell-shaped and 40 discs) were prepared out of heat-polymerized acrylic resin and divided into four groups per test (n=10). The control group for each test included unreinforced acrylic, while the test groups were reinforced with 2.5, 5, and 7.5 wt% nano-ZrO 2 . Acrylic resin was mixed according to manufacturer’s instructions, packed, and processed by conventional method. After polymerization, all specimens were finished, polished, and stored in distilled water at 37°C for 48±2 hours. Tensile strength (MPa) was evaluated using the universal testing machine while the specimens’ translucency was examined using a spectrophotometer. Statistical analysis was carried out by SPSS using the paired sample t -test ( p ≤0.05). A scanning electron microscope was used to analyze the morphological changes and topography of the fractured surfaces. Results This study showed that the mean tensile strength of the PMMA in the test groups of 2.5%NZ, 5%NZ, and 7.5%NZ was significantly higher than the control group. The tensile strength increased significantly after nano-ZrO 2 addition, and the maximum increase seen was in the 7.5%NZ group. The translucency values of the experimental groups were significantly lower than those of the control group. Within the reinforced groups, the 2.5%NZ group had significantly higher translucency values when compared to the 5%NZ and 7.5%NZ groups. Conclusion The addition of nano-ZrO 2 increased the tensile strength of the denture base acrylic. The increase was directly proportional to the nano-ZrO 2 concentration. The translucency of the PMMA was reduced as the nano-ZrO 2 increased. Clinical significance Based on the results of the current study, the tensile strength was improved with different percentages of nano-ZrO 2 additions. However, translucency was adversely affected. Therefore, it is important to determine the appropriate amount of reinforcing nano-ZrO 2 that will create a balance between achieved properties – mechanical and optical.
This study is aimed at evaluating the hybrid reinforcement effects of zirconium oxide nanoparticles (nano-ZrO2) and glass fibers (GFs) at different ratios on the flexural and impact strengths of a polymethylmethacrylate (PMMA) denture base. A total of 160 specimens were fabricated from heat-polymerized acrylic resins using the water bath technique. For the control group, the specimens did not receive any additions; for the test group, different concentrations of nano-ZrO2/GFs at 5% of the PMMA polymer were added. The concentrations of nano-ZrO2/GFs were as follows: 5%–0%, 4%–1%, 3%–2%, 2.5%–2.5%, 2%–3%, 1%–4%, and 0%–5%. The flexural strength was measured using the three-point bending test. The impact strength was measured using the Charpy impact test. Results were tabulated and analyzed using one-way analysis of variance (ANOVA) and the Tukey–Kramer multiple comparison test (p≤0.05). The flexural and impact strengths of PMMA-nano-ZrO2 + GF composites were significantly improved when compared with those of pure PMMA (p<0.05). The maximum flexural strength (94.05 ± 6.95 MPa) and impact strength (3.89 ± 0.46 kJ/m2) were obtained with PMMA (2.5%)/nano-ZrO2 + 2.5% GF mixtures and could be used for removable prosthesis fabrication.
Objective The objective of this study was to evaluate the effect of nano-SiO2 addition on the flexural strength (FS) of repaired acrylic denture base. Materials and Methods Heat-polymerized acrylic resin specimens were fabricated in dimensions of (65 × 10 × 2.5 ± 0.1 mm3 ) and then sectioned and prepared, creating repair gap with butt (90 degrees) and bevel (45 degrees) repair surface designs forming two main groups according to joint design. Further subdivision was done into four groups (n = 10) according to nano-SiO2 concentration: one unmodified group and three modified groups (0.25, 0.5, and 0.75 wt %) in the autopolymerized repair resin. Each pair of a specimen was assembled in a mold and repaired according to manufacturer’s recommendations. Statistical Analysis Three-point bending test was done to measure FS, followed by scanning electron microscope (SEM) examination for fracture surface analysis. Data were analyzed using ANOVA and Tukey’s post hoc test (α = 0.05). Results The addition of nano-SiO2 significantly improved FS of repaired acrylic resin in comparison to the unmodified group (p ˂ 0.05). For butt joint, significant differences between nano-SiO2 reinforced groups were noticed (p ˂ 0.05), while reinforced beveled groups did not differ significantly (p ˃ 0.05). Bevel design remarkably increased FS compared with butt design per respective filler concentration. From the SEM images, improved FS was presented with a homogeneous distribution of nano-SiO2 within polymethyl methacrylate. Conclusion Nano-SiO2 addition to repair resin and 45 degree-beveled repair surface increased FS of repaired acrylic resin.
Biocompatible SnO 2 NPs, were synthesized by simple and facile ultrasonic technique, and further studied for antibacterial, anticandidal and invitro cytotoxic activity. The obtained size of synthesized SnO 2 NPs, was 5-30 nm and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The evaluation of antibacterial and anticandidal activity of the SnO 2 NPs, was done by determining the minimum inhibitory concentration (MIC), and minimum bactericidal/fungicidal concentration (MBC/MFC), against Escherichia coli and Candida albicans, respectively. The MIC of 0.5 mg/ml and MBC of > 1 mg/ml for E. coli, while as the MIC of 8 mg/ml and MFC > 16 mg/ml for C. albicans, was obtained. Maximum activity for both, bacteria and Candida was achieved, however, to the best of our knowledge, this is the first report of anticandidal activity exhibited by SnO 2 NPs. Treatment of synthesized SnO 2 NPs against the colorectal (HCT-116) cancer cell line, decreased the cell survivability in a dose-dependent manner, as lower dose showed decrease of 73.00%, whereas, higher dosage caused a significant 31.34% decrease in the cell viability. The obtained results confirmed, that the prepared SnO 2 NPs can be the future broad-spectrum antibacterial, anticandidal and anticancer agent, and can be further explored for application in the biomedical field.promising potential for use in the pharmaceutical and biomedical applications. Supporting information summaryThe experimental section includes the detailed procedure for synthesis, characterization, antibacterial, anticandidal and cytotoxic activities of Tin Oxide NPs (SnO 2 NPs), which can be find in supporting information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.