An extended hybrid chemistry approach for complex hydrocarbons is developed to capture hightemperature fuel chemistry beyond the pyrolysis stage. The model may be constructed based on timeresolved measurements of oxidation species beyond the pyrolysis stage. The species' temporal profiles are reconstructed through an artificial neural network (ANN) regression to directly extract their chemical reaction rate information. The ANN regression is combined with a foundational C0-C2 chemical mechanism to model high-temperature fuel oxidation. This new approach is demonstrated for published experimental data sets of 3 fuels: n-heptane, n-dodecane and n-hexadecane. Further, a perturbed numerical data set for n-dodecane, generated using a detailed mechanism, is used to validate this approach with homogeneous chemistry calculations. The results demonstrate the performance and feasibility of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.