Currently, some Toxoplasma gondii genotypes are being associated with serious clinical presentations. A recent report showing the Africa 1 genotype in two local congenital toxoplasmosis cases acquired in Turkey formed the basis of this study because atypical Africa 1 genotype is most frequently detected in animals and patients from sub-Saharan Africa. Since stray cats are considered as the linkage between wild life and urban life in T. gondii transmission, the present study aimed to isolate and characterize T. gondii strains circulating in stray cats of İzmir (Western Turkey). A secondary objective was to determine toxoplasmosis seroprevalence in this cat population. Tissues obtained from 100 deceased stray cats were bioassayed and isolated strains were genotyped using 15 microsatellite markers. In addition, toxoplasmosis seroprevalence was analyzed in 1121 cat sera collected from several large veterinary clinics in İzmir. Among the 22 isolates, 19 were Type II (86.3%), two were Type III (9%) and one was Africa 1 genotype (4.5%). The overall seropositivity rates in cats were 42–48% and 33.4–34.4% according to IFA and ELISA, respectively. Seroprevalence in deceased cats was significantly higher than in healthy cats (P = 0.0033). Finding both the major clonal Type II lineage together with the Type III lineage also found in Middle East, and an atypical genotype, Africa 1 appears consistent with the specific geographic location of Turkey between three continents and raises the possibility of transportation of these strains between continents through trade routes or long distance migratory birds. In addition, the first large study of toxoplasma seroprevalence in a stray cat population was also reported. The relatively high seropositivity rates and the variety of T. gondii genotypes confirm the local stray cat population as a risk factor for human toxoplasmosis in İzmir.
MicroRNAs (miRNAs) are RNA molecules at about 22 nucleotide in length that are noncoding, which regulate gene expression in the posttranscriptional level by performing degradation or blocks translation of the target mRNA. It is known that they play roles in mechanisms such as metabolic regulation, embryogenesis, organogenesis, differentiation and growth control by providing post-transcriptional regulation of gene expression. With these properties, miRNAs play important roles in the regulation of biological processes such as proliferation, differentiation, apoptosis, drug resistance mechanisms in eukaryotic cells. In addition, there are miRNAs that can be used for cancer therapy. Tumor cells and tumor microenvironment have different miRNA expression profiles. Some miRNAs are known to play a role in the onset and progression of the tumor. miRNAs with oncogenic or tumor suppressive activity specific to different cancer types are still being investigated. This review summarizes the role of miRNAs in tumorigenesis, therapeutic strategies in human cancer and current studies. Keywords Cancer therapy Á miRNA mimic Á miRNA antagonists Á miRNA sponges Á miRNA masking Abbreviations miRNA MicroRNA RISC RNA-induced silencing complex oncomiR Oncogenic miRNA tsmiR Tumor suppressor miRNA UTR Unstranslated region(s) anti-miR(s) Anti-miRNA oligonucleotides NSCLC Non-small-cell lung cancer antagomiR(s) miRNA antagonists PTEN Phosphatase and tensin homolog VEGF Vascular epidermal growth factor SOCS1 Suppressor of cytokine signaling 1 AMOs Anti-miRNA oligonucleotides HCN1 Hyperpolarization-activated cyclic nucleotide-gated potassium channel 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.