Phenyl azide 1 and several substituted benzyl azides 2a‐o underwent 1,3‐dipolar cycloaddition reactions with dimethyl acetylenedicarboxylate 3, phenylacetylene 4 and ethyl propiolate 5 to afford the triazoles 6‐13. The reactions of these azides with ethyl propiolate were found to be completely regiospecific.
Corrosion inhibitors represent the most cost effective and flexible means of controlling internal corrosion associated with oil and gas production. Tests were carried out to demonstrate the structure/effect relationships which are effective in controlling the inhibition efficiency. To illustrate this approach, the substituent field effect at the paraposition of 1(Benzyl)1‐H‐4,5‐Dibenzoyl‐1,2,3‐ Triazole (BDBT) on corrosion inhibition has been investigated. Mild steel rotating cylinder electrode in acid media was used in conjunction with Tafel polarization technique, AC impedance measurements and continuous linear polarization resistance method. The nitro group was found to cause a considerable decrease in the corrosion inhibition of the parent compound BDBT. Owing to the induction effects of Br on the aromatic ring the bromo derivative has better inhibition protection than the methyl derivative. The corrosion rate profiles obtained from on‐line polarization technique showed that the inhibition capacity of the studied substituents at the para‐position increases as follows: NO2 < CH3 < Br < H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.