In this paper, a novel algorithm is presented to achieve the coordinated motion planning of a Legged Mobile Manipulator (LMM) for tracking the given end-effector’s trajectory. LMM robotic system can be obtained by mounting a manipulator on the top of a multi-legged platform for achieving the capabilities of both manipulation and mobility. To exploit the advantages of these capabilities, the manipulator should be able to accomplish the task, while the hexapod platform moves simultaneously. In the presented approach, the whole-body motion planning is achieved in two steps. In the first step, the robotic system is assumed to be a mobile manipulator, in which the manipulator has two additional translational degrees of freedom at the base. The redundancy of this robotic system is solved by treating it as an optimization problem. Then, in the second step, the omnidirectional motion of the legged platform is achieved with a combination of straight forward and crab motions. The proposed algorithm is tested through a numerical simulation in MATLAB and then, validated on a virtual model of the robot using multibody dynamic simulation software, MSC ADAMS. Multiple trajectories of the end-effector have been tested and the results show that the proposed algorithm accomplishes the given task successfully by providing a singularity-free whole-body motion.
High energy density welding processes like laser and electron beam welding are capable of welding dissimilar plates with much ease due to high power density and low heat input in spite of the varying thermos-physical properties of the used alloys. The present work is aimed to check the feasibility of joint prepared with laser welding of SS 316L and Inconel 718 plates. The experiments are designed to study the effect of welding speed on the mechanical and metallurgical behavior of the joints without any offset to joint line. The formation of laves phases is confirmed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) phase analysis. These laves phase are micro-segregation of Nb, Fe, C and Cr, which is because of high temperature in a small area of fusion zone (FZ) due to intense heat of laser source. Micro-segregation of different elements has led to micro-fissures, which is detrimental for the joints operating at elevated temperature. Cooling rate and peak temperature during welding play the significant role in obtaining a sound quality joint. The present work gives an insight on feasibility of laser welded joint of SS 316L and Inconel 718 with suitable selection of welding speed during laser welding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.