Tremendous quantities of numeric data have been generated as streams in various cyber ecosystems. Sorting is one of the most fundamental operations to gain knowledge from data. However, due to size restrictions of data storage which includes storage inside and outside CPU with respect to the massive streaming data sources, data can obviously overflow the storage. Consequently, all classic sorting algorithms of the past are incapable of obtaining a correct sorted sequence because data to be sorted cannot be totally stored in the data storage. This paper proposes a new sorting algorithm called streaming data sort for streaming data on a uniprocessor constrained by a limited storage size and the correctness of the sorted order. Data continuously flow into the storage as consecutive chunks with chunk sizes less than the storage size. A theoretical analysis of the space bound and the time complexity is provided. The sorting time complexity is O (n), where n is the number of incoming data. The space complexity is O (M), where M is the storage size. The experimental results show that streaming data sort can handle a million permuted data by using a storage whose size is set as low as 35% of the data size. This proposed concept can be practically applied to various applications in different fields where the data always overflow the working storage and sorting process is needed.
Big streaming data environment concerns a complicated scenario where data to be processed continuously flow into a processing unit and certainly cause a memory overflow problem. This obstructs the adaptation of deploying all existing classic sorting algorithms because the data to be sorted must be entirely stored inside the fixed-size storage including the space in internal and external storage devices. Generally, it is always assumed that the size of each data chunk is not larger than the size of storage (M) but in fact the size of the entire stream (n) is usually much larger than M. In this paper, a new fast continuous streaming sorting is proposed to cope with the constraint of storage overflow. The algorithm was tested with various real data sets consisting of 10,000 to 17,000,000 numbers and different storage sizes ranging from 0.01n to 0.50n. It was found that the feasible lower bound of storage size is 0.35n with 100% sorting accuracy. The sorting time outperforms bubble sort, quick sort, insertion sort, and merge sort when data size is greater than 1,000,000 numbers. Remarkably, the sorting time of the proposed algorithm is 1,452 times less than the sorting time of external merge sort and 28.1767 times less than the sorting time of streaming data sort. The time complexity of proposed algorithm is O(n) while the space complexity is O(M).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.