Although Ficus (Moraceae) is a keystone plant genus in the tropics, providing resources to many frugivorous vertebrates, its population genetic structure, which is an important determinant of its long-term survival, has rarely been investigated. We examined the population genetic structure of two dioecious fig species (Ficus hispida and Ficus exasperata) in the Indian Western Ghats using co-dominant nuclear microsatellite markers. We found high levels of microsatellite genetic diversity in both species. The regression slopes between genetic relationship coefficients (f ij ) and spatial distances were significantly negative in both species indicating that, on average, individuals in close spatial proximity were more likely to be related than individuals further apart. Mean parent-offspring distance (s) calculated using these slopes was about 200 m in both species. This should be contrasted with the very long pollen dispersal distances documented for monoecious Ficus species. Nevertheless, overall population genetic diversity remained large suggesting immigrant gene flow. Further studies will be required to analyze broader scale patterns.
Teak (Tectona grandis L. f.) is one of the precious bench mark tropical hardwood having qualities of durability, strength and visual pleasantries. Natural teak populations harbour a variety of characteristics that determine their economic, ecological and environmental importance. Sequencing of whole nuclear genome of teak provides a platform for functional analyses and development of genomic tools in applied tree improvement. A draft genome of 317 Mb was assembled at 151× coverage and annotated 36, 172 protein-coding genes. Approximately about 11.18% of the genome was repetitive. Microsatellites or simple sequence repeats (SSRs) are undoubtedly the most informative markers in genotyping, genetics and applied breeding applications. We generated 182,712 SSRs at the whole genome level, of which, 170,574 perfect SSRs were found; 16,252 perfect SSRs showed in silico polymorphisms across six genotypes suggesting their promising use in genetic conservation and tree improvement programmes. Genomic SSR markers developed in this study have high potential in advancing conservation and management of teak genetic resources. Phylogenetic studies confirmed the taxonomic position of the genus Tectona within the family Lamiaceae. Interestingly, estimation of divergence time inferred that the Miocene origin of the Tectona genus to be around 21.4508 million years ago.
Bacillus subtilis is a potent biocontrol agent producing a wide array of antifungal lipopeptides for the inhibition of fungal growth. B. subtilis B1 isolated from market-available compost provided an efficient control of rubberwood sapstain fungus, Lasiodiplodia theobromae. The current study is aimed to identify and characterize the lipopeptides responsible for the biocontrol of rubberwood sapstain fungus by Bacillus subtilis B1. The bacterial whole-cell surface extract from the dual culture of B. subtilis B1 and sapstain fungus (L. theobromae) was analysed using MALDI-TOF-MS. The protonated as well as sodium, potassium adducts of homologues of iturin C, surfactin, bacillomycin D and fengycin A and B were identified and expression of the lipopeptide biosynthetic genes could be confirmed through RT-PCR. This is the first report of mycobacillin and trimethylsilyl derivative of bacilysin during antagonism through MALDI-TOF-MS. MALDI-TOF-MS with RT-PCR offered easy platforms to characterize the antifungal lipopeptides. The identification of antifungal lipopeptides can lead to the formulation of prospective biocontrol by-products which have wide-scale utility.
& Context East Indian sandalwood (Santalum album L.) in commercial markets is highly prone to adulteration. A number of cases were registered with regard to the adulteration of East Indian sandalwood, but the lack of technical tools for the precise species identification of the source wood stalled most of the court cases. & Aims The standard DNA barcode regions, the rbcL, matK and trnH-psbA chloroplast genomic sequences recommended by the Consortium of Barcode of Life (COBOL) were analysed to distinguish wood adulterants of East Indian sandalwood. & Methods Standard polymerase chain reactions with COBOL recommended primers were performed for all three barcode loci. The PCR products after gel elution were sequenced and alignments were performed using CLUSTALX. & Results Single nucleotide polymorphisms (SNPs) identified with rbcL and trnH -psbA sequences of Erythroxylum monogynum Roxb. as well as with matK sequences of Osyris wightiana Wall ex. Wight could be efficiently utilized for the detection/monitoring of East Indian sandalwood adulterants. Among the two common adulterants O. wightiana and E. monogynum , the former was more similar to S. album and grouped together in the dendrogram. & Conclusion The study recommends the exploitation of DNA barcoding technique using standard barcodes to trace sandalwood timber adulterants.
Humboldtia brunonis (Fabaceae, Caesalpinioideae) is a dominant self-incompatible ant-plant or myrmecophyte, growing as an understorey tree in high-density patches. It is endemic to the biodiversity hotspot of the southern Western Ghats of India and, besides ants, harbours many endemic invertebrate taxa, such as bees that pollinate it as well as arboreal earthworms, within swollen hollow stem internodes called domatia. Using inter simple sequence repeat (ISSR) markers, three geographically separated populations were found to be multiclonal, characterized by high levels of clonal diversity. Values for the Simpson diversity index ranged between 0.764 and 0.964, and for Fager's evenness index between 0.00 and 0.036 for neighbourhoods within populations. This myrmecophyte was found to combine sexual recruitment (66.7%) and clonal production (33.3%) as methods of reproduction. Moderate amounts of genetic diversity at the species level were observed, with 52.63% polymorphism, and moderate values of Shannon's diversity index (0.1895) as well as of Nei's gene diversity (0.1186). In each population, observed genotypic diversity was significantly lower than expected, indicating significant genetic structure. Neighbour-joining trees demonstrated that Agumbe, which is the most northern population examined and geographically twice as far away from the other two populations, grouped separately and with larger bootstrap support from a larger cluster consisting of the Sampaji and Solaikolli populations, which are closer to each other geographically. Some neighbourhoods within each population showed spatial genetic structure even at small spatial scales of less than 5 m. A combination of clonality and short-distance pollen movement by small pollinating bees (Braunsapis puangensis) coupled with primary ballistic seed dispersal, and possible secondary seed dispersal by rodents, may contribute to spatial genetic structure at such small scales. The clonality of H. brunonis may be a factor that contributes to its dominance in Western Ghat forests where it supports a rich diversity of invertebrate fauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.