It can be argued that the last true paradigm shift in the bioanalytical (BA) arena was the shift from high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to HPLC with tandem mass spectrometry (MS/MS) detection after the commercialization of the triple quadrupole mass spectrometer in the 1990s. HPLC-MS/MS analysis based on selected reaction monitoring (SRM) has become the gold standard for BA assays and is used by all the major pharmaceutical companies for the quantitative analysis of new drug entities (NCEs) as part of the new drug discovery and development process. While LC-MS/MS continues to be the best tool for drug discovery bioanalysis, a new paradigm involving high-resolution mass spectrometry (HRMS) and ultrahigh-pressure liquid chromatography (uHPLC) is starting to make inroads into the pharmaceutical industry. The ability to collect full scan spectra, with excellent mass accuracy, mass resolution, 10-250 ms scan speeds and no NCE-related MS parameter optimization, makes the uHPLC-HRMS techniques suitable for quantitative analysis of NCEs while preserving maximum qualitative information about other drug-related and endogenous components such as metabolites, degradants, biomarkers and formulation materials. In this perspective article, we provide some insight into the evolution of the hybrid quadrupole-time-of-flight (Qq-TOF) mass spectrometer and propose some of the desirable specifications that such HRMS systems should have to be integrated into the drug discovery bioanalytical workflow for performing integrated qualitative and quantitative bioanalysis of drugs and related components.
Diabesity has become a popular term to describe the specific form of diabetes that develops late in life and is associated with obesity. While there is a correlation between diabetes and obesity, the association is not universally predictive. Defining the metabolic characteristics of obesity that lead to diabetes, and how obese individuals who develop diabetes different from those who do not, are important goals. The use of large-scale omics analyses (e.g., metabolomic, proteomic, transcriptomic, and lipidomic) of diabetes and obesity may help to identify new targets to treat these conditions. This report discusses how various types of omics data can be integrated to shed light on the changes in metabolism that occur in obesity and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.