The canonical view is that touch is signaled by fast-conducting, thickly myelinated afferents, whereas pain is signaled by slow-conducting, thinly myelinated (“fast” pain) or unmyelinated (“slow” pain) afferents. While other mammals have thickly myelinated afferents signaling pain (ultrafast nociceptors), these have not been demonstrated in humans. Here, we performed single-unit axonal recordings (microneurography) from cutaneous mechanoreceptive afferents in healthy participants. We identified A-fiber high-threshold mechanoreceptors (A-HTMRs) that were insensitive to gentle touch, encoded noxious skin indentations, and displayed conduction velocities similar to A-fiber low-threshold mechanoreceptors. Intraneural electrical stimulation of single ultrafast A-HTMRs evoked painful percepts. Testing in patients with selective deafferentation revealed impaired pain judgments to graded mechanical stimuli only when thickly myelinated fibers were absent. This function was preserved in patients with a loss-of-function mutation in mechanotransduction channel PIEZO2. These findings demonstrate that human mechanical pain does not require PIEZO2 and can be signaled by fast-conducting, thickly myelinated afferents.
Sutures remain the standard peripheral nerve repair technique, whether applied directly or indirectly to nerve tissue. Unfortunately, significant postoperative complications can result, such as inflammation, neuroma formation and foreign body reactions. Photochemical-tissue-bonding (PTB) using rose Bengal (RB) integrated into a chitosan bioadhesive is an alternative nerve repair device that removes the need for sutures. Rats were arranged into three groups: RB-chitosan adhesives-repair, end-to-end epineural suture-repair (surgical standard) and sham laser-irradiated control. Groups were compared through histological assessment, electrophysiological recordings and grip motor strength. RB-chitosan adhesive repaired nerves displayed comparable results when compared to the standard suture-repair based on histological and electrophysiological findings. Functionally, RB-chitosan adhesive was associated with a quicker and more pronounced recovery of grip force when compared to the suture-repair.
We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain.
The effects of changes to cold, mechanical, and heat thresholds following median nerve transection with repair by sutures (Su) or Rose Bengal adhesion (RA) were compared to sham-operated animals. Both nerve-injured groups showed a transient, ipsilateral hyposensitivity to mechanical and heat stimuli followed by a robust and long-lasting hypersensitivity (6-7 weeks) with gradual recovery towards pre-injury levels by 90 days post-repair. Both tactile and thermal hypersensitivity were seen in the contralateral limb that was similar in onset but differed in magnitude and resolved more rapidly compared to the injured limb. Prior to injury, no animals showed any signs of aversion to cold plate temperatures of 4-16 °C. After injury, animals showed cold allodynia, lasting for 7 weeks in RA-repaired rats before recovering towards pre-injury levels, but were still present at 12 weeks in Su-repaired rats. Additionally, sensory recovery in the RA group was faster compared to the Su group in all behavioural tests. Surprisingly, sham-operated rats showed similar bilateral behavioural changes to all sensory stimuli that were comparable in onset and magnitude to the nerve-injured groups but resolved more quickly compared to nerve-injured rats. These results suggest that nerve repair using a sutureless approach produces an accelerated recovery with reduced sensorimotor disturbances compared to direct suturing. They also describe, for the first time, that unilateral forelimb nerve injury produces mirror-image-like sensory perturbations in the contralateral limb, suggesting that the contralateral side is not a true control for sensory testing. The potential mechanisms involved in this altered behaviour are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.