For many years, lots of people have been suffering from Parkinson's disease all over the world, and some datasets are generated by recording important PD features for reliable decision-making diagnostics. But a dataset can contain correlated data points and outliers that can affect the dataset's output. In this work, a framework is proposed where the performance of an original dataset is compared to the performance of its reduced version after removing correlated features and outliers. The dataset is collected from UCI Machine Learning Repository, and many machine learning (ML) classifiers are used to evaluate its performance in various categories. The same process is repeated on the reduced dataset, and some improvement in prediction accuracy is noticed. Among ANOVA F-test, RFE, MIFS, and CSFS methods, the Logistic Regression classifier along with RFEbased feature selection technique outperforms all other classifiers. We observed that our improved system demonstrates 82.94% accuracy, 82.74% ROC, 82.9% F-measure, along with 17.46% false positive rate and 17.05% false negative rate, which are better compared to the primary dataset prediction accuracy metric values. Therefore, we hope that this model can be beneficial for physicians to diagnose PD more explicitly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.