Forecasting thunderstorm is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent nonlinearity of their dynamics and physics. Accurate forecasting of severe thunderstorms is critical for a large range of users in the community. In this paper, experiments are conducted with artificial neural network model to predict severe thunderstorms that occurred over Kolkata during May 3, 11, and 15, 2009, using thunderstorm affected meteorological parameters. The capabilities of six learning algorithms, namely, Step, Momentum, Conjugate Gradient, Quick Propagation, Levenberg-Marquardt, and Delta-Bar-Delta, in predicting thunderstorms and the usefulness for the advanced prediction were studied and their performances were evaluated by a number of statistical measures. The results indicate that Levenberg-Marquardt algorithm well predicted thunderstorm affected surface parameters and 1, 3, and 24 h advanced prediction models are able to predict hourly temperature and relative humidity adequately with sudden fall and rise during thunderstorm hour. This demonstrates its distinct capability and advantages in identifying meteorological time series comprising nonlinear characteristics. The developed model can be useful in decision making for meteorologists and others who work with real-time thunderstorm forecast.
Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as 'Nor'westers'(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region.
As a useful data mining technique biclustering identifies local patterns from gene expression data. A bicluster of a gene expression dataset is a subset of genes which exhibit similar expression patterns along a subset of conditions. In this paper a new method is introduced based on greedy search algorithm combined with the evolutionary technique particle swarm optimization for the identification of biclusters. Greedy methods have the possibility of getting trapped in local minima. Metaheuristic methods like particle swarm optimization have features for escaping from local minima and can find global optimal solutions. In this algorithm biclusters are identified in three steps. In the first step small disjoint tightly coregulated submatrices are generated using K-Means clustering algorithm. Then greedy search algorithm is used to enlarge the seeds. Output of greedy search algorithm is used as initial population of binary PSO. The result obtained on Yeast dataset shows that this method can generate high quality biclusters.
This paper presents the design and development of a frame based approach for speech to sign language machine translation system in the domain of railways and banking. This work aims to utilize the capability of Artificial intelligence for the improvement of physically challenged, deaf-mute people. Our work concentrates on the sign language used by the deaf community of Indian subcontinent which is called Indian Sign Language (ISL). Input to the system is the clerk's speech and the output of this system is a 3D virtual human character playing the signs for the uttered phrases. The system builds up 3D animation from pre-recorded motion capture data. Our work proposes to build a Malayalam to ISL Keywords-machine translation; Indian sign language; language processing; motioncapture; 3D virtual human I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.