Structural alerts are molecular substructures assumed to be associated with molecular initiating events in various toxic effects and an integral part of in silico toxicology. However, alerts derived using the knowledge of human experts often suffer from a lack of predictivity, specificity, and satisfactory coverage. In this work, we present a method to build hybrid QSAR models by combining expert knowledge-based alerts and statistically mined molecular fragments. Our objective was to find out if the combination is better than the individual systems. Lasso regularization-based variable selection was applied on combined sets of knowledge-based alerts and molecular fragments, but the variable elimination was only allowed to happen on the molecular fragments. We tested the concept on three toxicity end points, i.e., skin sensitization, acute Daphnia toxicity, and Ames mutagenicity, which covered both classification and regression problems. Results showed the predictive performance of such hybrid models is, indeed, better than the models based solely on expert alerts or statistically mined fragments alone. The method also enables the discovery of activating and mitigating/deactivating features for toxicity alerts and the identification of new alerts, thereby reducing false positive and false negative outcomes commonly associated with generic alerts and alerts with poor coverage, respectively.
Recent withdrawal of several drugs from the market due to elevated levels of N-nitrosamine impurities underscores the need for computational approaches to assess the carcinogenicity risk of nitrosamines. However, current approaches are limited because robust animal carcinogenicity data are only available for a few simple nitrosamines, which do not represent the structural diversity of the many possible nitrosamine drug substance related impurities (NDSRIs). In this paper, we present a novel method that uses data on CYP-mediated metabolic hydroxylation of CH2 groups in non-nitrosamine xenobiotics to identify structural features that may also help in predicting the likelihood of metabolic α-carbon hydroxylation in N-nitrosamines. Our approach offers a new avenue for tapping into potentially large experimental data sets on xenobiotic metabolism to improve risk assessment of nitrosamines. As α-carbon hydroxylation is the crucial rate-limiting step in nitrosamine metabolic activation, identifying and quantifying the influence of various structural features on this step can provide valuable insights into their carcinogenic potential. This is especially important considering the scarce information available on factors that affect NDSRI metabolic activation. We have identified hundreds of structural features and calculated their impact on hydroxylation, a significant advancement compared to the limited findings from the small nitrosamine carcinogenicity data set. While relying solely on α-carbon hydroxylation prediction is insufficient for forecasting carcinogenic potency, the identified features can help in the selection of relevant structural analogues in read across studies and assist experts who, after considering other factors such as the reactivity of the resulting electrophilic diazonium species, can establish the acceptable intake (AI) limits for nitrosamine impurities.
Recent withdrawal of several drugs from the market due to N-nitrosamine impurities highlighted the necessity for computational approaches to assess the carcinogenicity risk of these impurities. However, current approaches are limited because robust animal carcinogenicity data is only available for a few simple nitrosamines, which do not represent the structural diversity of the many possible nitrosamine drug substance related impurities (NDSRIs). In this paper, we present a novel method that uses data on CYP-mediated metabolic hydroxylation of CH2 groups in non-nitrosamine xenobiotics to identify structural features that may also help in predicting the likelihood of metabolic alpha-carbon hydroxylation in N-nitrosamines. Our approach offers a new avenue for tapping into potentially large experimental datasets on xenobiotic metabolism to improve the risk assessment of nitrosamines. It is believed that alpha-carbon hydroxylation is the vital rate-limiting step in the metabolic activation of nitrosamines, and identifying structural features that influence this process may be valuable in evaluating their carcinogenic potential. This is particularly significant as information regarding the factors that influence the metabolic activation of NDSRIs is practically non-existent. We discovered hundreds of structural features that either promote or hinder hydroxylation, in contrast to the very few that have been identified so far from the small nitrosamine carcinogenicity dataset. While relying solely on -carbon hydroxylation prediction is insufficient for forecasting carcinogenic potency, the identified features can help in the selection of relevant structural analogs in read across studies and assist domain experts who, after considering other factors such as the reactivity of the resulting electrophilic diazonium species, can establish the acceptable intake limits for nitrosamine impurities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.