Integrated image-based design and solid free-form fabrication can create scaffolds that attain desired elasticity and permeability while fitting any 3D craniofacial defect. The scaffolds could be manufactured from degradable polymers, calcium phosphate ceramics and titanium. The designed scaffolds supported significant bone regeneration for all pore sizes ranging from 300 to 1200 microns. These results suggest that designed scaffolds are clinically applicable for complex craniofacial reconstruction.
Extremely large magnetoresistance (XMR) was recently discovered in WTe2, triggering extensive research on this material regarding the XMR origin. Since WTe2 is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, this material has been considered to be electronically two-dimensional (2D). Here we report two new findings on WTe2: (1) WTe2 is electronically 3D with a mass anisotropy as low as 2, as revealed by the 3D scaling behavior of the resistance R(H, θ) = R(ε θ H) with ε θ = (cos 2 θ + γ −2 sin 2 θ) 1/2 , θ being the magnetic field angle with respect to c-axis of the crystal and γ being the mass anisotropy; (2) the mass anisotropy γ varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. Our results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2, including the origin of the remarkable 'turn-on' behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.
A hallmark of materials with extremely large magnetoresistance (XMR) is the transformative turnon temperature behavior: when the applied magnetic field H is above certain value, the resistivity versus temperature ρ(T ) curve shows a minimum at a field dependent temperature T * , which has been interpreted as a magnetic-field-driven metal-insulator transition or attributed to an electronic structure change. Here, we demonstrate that ρ(T ) curves with turn-on behavior in the newly discovered XMR material WTe2 can be scaled as MR ∼ (H/ρ0) m with m ≈ 2 and ρ0 being the resistivity at zero-field. We obtained experimentally and also derived from the observed scaling the magnetic field dependence of the turn-on temperature T * ∼ (H − Hc) ν with ν ≈ 1/2, which was earlier used as evidence for a predicted metal-insulator transition. The scaling also leads to a simple quantitative expression for the resistivity ρ * ≈ 2ρ0 at the onset of the XMR behavior, which fits the data remarkably well. These results exclude the possible existence of a magnetic-field-driven metal-insulator transition or significant contribution of an electronic structure change to the lowtemperature XMR in WTe2. This work resolves the origin of the turn-on behavior observed in several XMR materials and also provides a general route for a quantitative understanding of the temperature dependence of MR in both XMR and non-XMR materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.