Short bursts (∼1 ms) of gas, injecting ∼1017–1018 molecules of hydrogen and/or deuterium, lead to the observation of cold pulse propagation phenomenon in hydrogen plasmas of the ADITYA-U tokamak. After every injection, a sharp increase in the chord-averaged density is observed followed by an increase in the core electron temperature. Simultaneously, the electron density and temperature decrease at the edge. All these observations are characteristics of cold pulse propagation due to the pulsed gas application. The increase in the core temperature is observed to depend on the values of both the chord-averaged plasma density at the instant of gas-injection and the amount of gas injected below a threshold value. Increasing the amount of gas-puff leads to higher increments in the core-density and the core-temperature. Interestingly, the rates of rise of density and temperature remain the same. The gas-puff also leads to a fast decrease in the radially outward electric field together with a rapid increase in the loop-voltage suggesting a reduction in the ion-orbit loss and an increase in Ware-pinch. This may explain the sharp density rise, which remains mostly independent of the toroidal magnetic field and plasma current in the experiment. Application of a subsequent gas-puff before the effect of the previous gas-pulse dies down, leads to an increase in the overall electron density and consequently the energy confinement time.
The effect of a periodic train of short gas-puff pulses on the rotation frequency and amplitude of drift-tearing modes has been studied in ADITYA/ADITYA-U tokamak. The short gas puffs, injecting approximately ~10 17-10 18 molecules of fuel gas (hydrogen) at one toroidal location, are found to concomitantly decrease the drift-tearing mode rotation frequency and the mode amplitude during the period of injection and then recover back to its initial values when the gas pulse is over. This leads to a periodic modulation of the rotation frequency and amplitude of the drift-tearing modes that is correlated with the periodicity of the gas pulse injection. The underlying mechanism for this change in the mode characteristic appears to be related to gas puff induced change in the radial profile of the plasma pressure in the edge region that brings about a reduction in the diamagnetic drift frequency. Detailed experimental measurements and BOUT++ code simulations support such a reduction in diamagnetic drift frequency. Our results reveal a close interaction between the edge dynamics and core MHD phenomena in a tokamak that could help us better understand the rotation dynamics and amplitude pulsations of magnetic islands.
Since the 2018 IAEA-FEC conference, in addition to expanding the parameter horizons of the ADITYA-U machine, emphasis has been given to dedicated experiments on inductively driven particle injection (IPI) for disruption studies, runaway electron (RE) dynamics and mitigation, plasma rotation reversal, radiative-improved modes using Ne and Ar injection, modulation of magneto–hydrodynamic modes, edge turbulence using periodic gas puffs and electrode biasing (E-B). Plasma parameters close to the design parameters of circular plasmas with H2 and D2 as fuel have been realized, and the shaped plasma operation has also been initiated. Consistent plasma discharges having I P ∼ 100–210 kA, t ∼ 300–400 ms, n e ∼ 3–6 × 1019 m−3, core T e ∼ 300–500 eV were achieved with a maximum B T of ∼1.5 T. The enhanced plasma parameters are the outcome of repeated cycles of baking (135 °C), followed by extensive wall conditioning, which includes pulsed glow discharge cleaning in H, He and Ar–H mixture, and lithiumization. A higher confinement time has been observed in D2 compared to H2 plasmas. Furthermore, shaped plasmas are attempted for the first time in ADITYA-U. A first of its kind inductively driven particle injection for disruption mitigation studies has been developed and operated. The injection of solid particles into the plasma core leads to a fast current quench. Two pulses of electron cyclotron resonance wave at 42 GHz are launched in a single discharge: one pulse is used for pre-ionization and the second for heating. In a novel approach, a positively biased electrode is used to confine REs after discharge termination. E-B is also used for controlling the rotation of drift-tearing modes by changing the plasma rotation. Cold pulse propagation and signatures of detachment are observed during the injection of short gas puffs. A correlation between the plasma toroidal rotation and the total radiated power has been observed with neon gas injection-induced improved confinement modes.
The influence of background plasma poloidal rotation on the rotation frequency of the m/n = 2/1 drift tearing mode (DTM) has been studied in ADITYA-U tokamak. The poloidal rotation velocity of the background plasma in the ion diamagnetic direction is increased or decreased by inducing an outward or inward radial electric field, respectively, through a biased-electrode placed in the edge region of the plasma. The rotation frequency of the preexisting drift tearing mode, rotating in the electron diamagnetic direction, concomitantly decreased or increased with the application of bias depending on its polarity. The positive-bias increases the background plasma rotation in the ion-diamagnetic direction from its pre-bias value, hence decreasing the DTM rotation frequency, whereas the negative bias reduces the plasma rotation velocity in the ion-diamagnetic direction, hence increasing the mode rotation. In addition to that, a short gas puff introduced during the positive and negative bias pulse further reduces the mode frequency, however, with different amplitudes in different bias-polarities. These observations suggest that the background plasma rotation contributes significantly toward the rotation of DTMs, and the rotation frequency of the magnetohydrodynamic modes can be modified by varying the poloidal rotation of the background plasma and/or the diamagnetic drift frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.