Halogen bonding interactions between halogenated ligands and proteins were examined using the crystal structures deposited to date in the PDB. The data was analyzed as a function of halogen bonding to main chain Lewis bases, viz. oxygen of backbone carbonyl and backbone amide nitrogen. This analysis also examined halogen bonding to side-chain Lewis bases (O, N, and S) and to the electron-rich aromatic amino acids. All interactions were restricted to van der Waals radii with respective atoms. The data reveals that while fluorine and chlorine have strong tendencies favoring interactions with the backbone Lewis bases at glycine, the trend is not restricted to the achiral amino acid backbone for larger halogens. Halogen side-chain interactions are not restricted to amino acids containing O, N, and S as Lewis bases. Electron-rich aromatic amino acids host a high frequency of halogen bonds as does Leu. A closer examination of the latter hydrophobic side chain reveals that the "propensity of interactions" of halogen ligands at this oily residue is an outcome of strong classical halogen bonds with Lewis bases in the vicinity. Finally, an examination of Θ1 (C-X···O and C-X···N) and Θ2 (X···O-Z and X···N-Z) angles reveals that very few ligands adopt classical halogen bonding angles, suggesting that steric and other factors may influence these angles. The data is discussed in the context of ligand design for pharmaceutical applications.
DrugCentral is a public resource (http://drugcentral.org) that serves the scientific community by providing up-to-date drug information, as described in previous papers. The current release includes 109 newly approved (October 2018 through March 2020) active pharmaceutical ingredients in the US, Europe, Japan and other countries; and two molecular entities (e.g. mefuparib) of interest for COVID19. New additions include a set of pharmacokinetic properties for ∼1000 drugs, and a sex-based separation of side effects, processed from FAERS (FDA Adverse Event Reporting System); as well as a drug repositioning prioritization scheme based on the market availability and intellectual property rights forFDA approved drugs. In the context of the COVID19 pandemic, we also incorporated REDIAL-2020, a machine learning platform that estimates anti-SARS-CoV-2 activities, as well as the ‘drugs in news’ feature offers a brief enumeration of the most interesting drugs at the present moment. The full database dump and data files are available for download from the DrugCentral web portal.
Halogen bonding has emerged at the forefront of advances in improving ligand: receptor interactions. In particular the newfound ability of this extant non-covalent-bonding phenomena has revolutionized computational approaches to drug discovery while simultaneously reenergizing synthetic approaches to the field. Here we survey, via examples of classical applications involving halogen atoms in pharmaceutical compounds and their biological hosts, the unique advantages that halogen atoms offer as both Lewis acids and Lewis bases.
BackgroundHalogen bonding has recently come to play as a target for lead optimization in rational drug design. However, most docking program don’t account for halogen bonding in their scoring functions and are not able to utilize this new approach. In this study a new and improved halogen bonding scoring function (XBSF) is presented along with its implementation in the AutoDock Vina molecular docking software. This new improved program is termed as AutoDock VinaXB, where XB stands for the halogen bonding parameters that were added.ResultsXBSF scoring function is derived based on the X···A distance and C–X···A angle of interacting atoms. The distance term was further corrected to account for the polar flattening effect of halogens. A total of 106 protein-halogenated ligand complexes were tested and compared in terms of binding affinity and docking poses using Vina and VinaXB. VinaXB performed superior to Vina in the majority of instances. VinaXB was closer to native pose both above and below 2 Å deviation categories almost twice as frequently as Vina.ConclusionsImplementation of XBSF into AutoDock Vina has been shown to improve the accuracy of the docking result with regards to halogenated ligands. AutoDock VinaXB addresses the issues of halogen bonds that were previously being scored unfavorably due to repulsion factors, thus effectively lowering the output RMSD values.Electronic supplementary materialThe online version of this article (doi:10.1186/s13321-016-0139-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.