Oxidative stress is one causative factor of the pathogenesis and aggressiveness of most of the cancer types, including prostate cancer (CaP). A moderate increase in reactive oxygen species (ROS) induces cell proliferation whereas excessive amounts of ROS promote apoptosis. In this study, we explored the pro-oxidant property of 3, 9-dihydroxy-2-prenylcoumestan [psoralidin (pso)], a dietary agent, on CaP (PC-3 and C4-2B) cells. Pso greatly induced ROS expression (more than 20-fold) that resulted in the growth inhibition of CaP cells. Overexpression of anti-oxidant enzymes superoxide dismutase 1 (SOD1), SOD2, and catalase, or pretreatment with the pharmacological inhibitor N-acetylcysteine (NAC) significantly attenuated both pso-mediated ROS generation and pso-mediated growth inhibition in CaP cells. Furthermore, pso administration significantly inhibited the migratory and invasive property of CaP cells by decreasing the transcription of β-catenin, snail, and slug, which promote epithelial mesenchymal transition (EMT), and by concurrently inducing E-cadherin expression in CaP cells. Pso-induced ROS generation in CaP cells resulted in loss of mitochondrial membrane potential, cytochrome-c release, and activation of caspase-3 and -9 and poly (ADP-ribose) polymerase (PARP), which led to apoptosis. On the other hand, overexpression of anti-oxidants rescued pso-mediated effects on CaP cells. These findings suggest that increasing the threshold of intracellular ROS could prevent or treat CaP growth and metastasis.
Cell cycle deregulation is strongly associated with the pathogenesis of prostate cancer (CaP). Clinical trials of cell cycle regulators that target either the G0/G1 or G2/M phase to inhibit the growth of cancers including CaP are increasing. In this study, we determined the cell-cycle regulatory potential of the herbal molecule Withaferin-A (WA) on CaP cells. WA induced irreversible G2/M arrest in both CaP cell lines (PC3 and DU145) for 48 h. The G2/M arrest was accompanied by upregulation of phosphorylated Wee1, phophorylated histone H3, p21 and Aurora-B. On the other hand, downregulation of cyclins (E2, A, and B1) and phorphorylated Cdc2 (Tyr15) was observed in WA-treated CaP cells. In addition, decreased levels of phosphorylated Chk1 (Ser345) and Chk2 (Thr68) were evident in WA-treated CaP cells. Our results suggest that activation of Cdc2 leads to accumulation in M-phase, with abnormal duplication, and initiation of mitotic catastrophe that results in cell death. In conclusion, these results clearly highlight the potential of WA as a regulator of the G2/M phase of the cell cycle and as a therapeutic agent for CaP.
Activation of the serine-threonine protein kinase AKT has emerged as a central feature of epithelial-mesenchymal transition (EMT), which is the initial step for metastasis in many cancer models, including colorectal cancer. The focus of our study was to dissect the role of AKT and its molecular regulation of EMT in colorectal cancer. HCT-116 colorectal cancer cells stably overexpressing AKT (AKT/HCT-116) showed significantly higher cell proliferation compared with vector-transfected cells (pCMV/HCT-116). Elevated expression of important EMT-related transcription factors and genes such as Snail, Slug, β-catenin, vimentin, and MMP-9 correlated with increased migration and invasion by AKT/HCT-116 cells. Further, in vivo studies confirmed that AKT/HCT-116 xenografts were highly aggressive and angiogenic in nature compared with pCMV/HCT-116 xenografts. Molecular analysis of tumor samples revealed transcriptional regulation of Snail, Slug, β-catenin, MMP-2, and MMP-9 in AKT/HCT-116 tumors. These results were supported by immunohistochemistry analysis. Low levels of E-cadherin expression with a concomitant increase in and nuclear localization of β-catenin were evident in AKT/HCT-116 tumors compared with control tumors. Increased microvessel formation coincident with high expression of Factor VIII and increased numbers of reticulocytes confirmed the angiogenic property of AKT/HCT-116 tumors. Our results confirm the potential role of AKT signaling in regulating EMT and angiogenesis in colorectal cancer and suggest that inhibition of AKT can serve as an important therapeutic strategy in modulating EMT in colorectal cancer growth and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.