This paper emphasizes on NavIC's performance in ionospheric studies over the Indian subcontinent region. The study is performed using data of one year (2017-18) at IIT Indore, a location near the northern crest of Equatorial Ionization Anomaly (EIA). It has been observed that even without the individual error corrections, the results are within ±20% of NavIC VTEC estimates observed over the 1 • x 1 • grid of IPP surrounding the GPS VTEC estimates for most of the time.. Additionally, ionospheric response during two distinct geomagnetic storms (September 08 and 28, 2017) at the same location and other IGS stations covering the Indian subcontinent using both GPS and NavIC has also been presented. This analysis revealed similar variations in TEC during the geomagnetic storms of September 2017, indicating the suitability of NavIC to study space weather events along with the ionospheric studies over the Indian subcontinent.
This paper presents the response of the ionosphere during the intense geomagnetic storms of October 12-20, 2016 and May 26-31, 2017 which occurred during the declining phase of the solar cycle 24. Total Electron Content (TEC) from GPS measured at Indore, Calcutta and Siliguri having geomagnetic dips varying from 32.23°N, 32°N and 39.49°N respectively and at the International GNSS Service (IGS) stations at Lucknow (beyond anomaly crest), Hyderabad (between geomagnetic equator and northern crest of EIA) and Bangalore (near magnetic equator) in the Indian longitude zone have been used for the storms. Prominent peaks in diurnal maximum in excess of 20-45 TECU over the quiet time values were observed during the October 2016 storm at Lucknow, Indore, Hyderabad, Bangalore and 10-20 TECU for the May 2017 storm at Siliguri, Indore, Calcutta and Hyderabad. The GUVI images onboard TIMED spacecraft that measures the thermospheric O/N 2 ratio, showed high values (O/N 2 ratio of about 0.7) on October 16 when positive storm effects were observed compared to the other days during the storm period. The observed features have been explained in terms of the O/N 2 ratio increase in the equatorial thermosphere, CIR-induced High Speed Solar Wind (HSSW) event for the October 2016 storm. The TEC enhancement has also been explained in terms of the Auroral Electrojet (AE), neutral wind values obtained from the Horizontal Wind Model (HWM14) and equatorial electrojet strength from magnetometer data for both October 2016 and May 2017 storms. These results are one of the first to be reported from the Indian longitude sector on influence of CMEand CIR-driven geomagnetic storms on TEC during the declining phase of solar cycle 24.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.