Though, Acanthamoeba does not express a homolog of the human mu-opioid receptor, but does shows evidence of the homologs for other known human targets of loperamide that are involved in Ca+2 uptake and Ca+2 signal transduction pathways. This suggests optimization of similar drug interactions with these targets may be useful in developing new approaches to control the growth of this parasite and possibly the diseases caused by it.
Acetylcholine (ACh) is the neurotransmitter of cholinergic signal transduction that affects the target cells via muscarinic (mAChR) and nicotinic (nAChR) cholinergic receptors embedded in the cell membrane. Of the cholinergic receptors that bind to ACh, the mAChRs execute several cognitive and metabolic functions in the human central nervous system (CNS). Very little is known about the origins and autocrine/paracrine roles of the ACh in primitive life forms. With the recent report of the evidence of an ACh binding mAChR1 like receptor in Acanthamoeba spp., it was tempting to investigate the origin and functional roles of cholinergic G-Protein coupled receptors (GPCRs) in the biology of eukaryotes. We inferred the presence of ACh, its synthetic, degradation system, and a signal transduction pathway in an approximately ∼2.0 billion year old primitive eukaryotic cell Acanthamoeba castellanii. Bioinformatics analysis, ligand binding prediction, and docking methods were used to establish the origins of enzymes involved in the synthesis and degradation of ACh. Notably, we provide evidence of the presence of ACh in A. castellanii by colorimetric analysis, which to date is the only report of its presence in this primitive unicellular eukaryote. We show the evidence for the presence of homology of evolutionary conserved key enzymes of the cholinergic system like choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in A. castellanii spp., which were found to be near identical to their human counterparts. Tracing the origin, functions of ACh, and primeval mAChRs in primitive eukaryotic cells has the potential of uncovering covert cholinergic pathways that can be extended to humans in order to understand the states of cholinergic deficiency in neurodegenerative diseases (ND).
The existing bioinformatics tools, ligand binding attribute prediction, and model building offer a specific method to establish homology of proteins, discover drug targets, and facilitate the investigation of the evolution of several types of cardinal ion channels from unicellular eukaryotes to multicellular species as humans.
The human CA1, AQP, band-3 protein and H-transport proteins revealed similar proteins in Acanthamoeba. Docking showed the binding of AZM on amoebal AQP-like proteins. Acanthamoeba showed transient shape changes and encystation at differential doses of brinzolamide, mannitol and AZM. Conclusion: Water and pH regulating adapter proteins in Acanthamoeba and humans show significant homology, these mechanisms evolved early in the primitive unicellular eukaryotes and have remained conserved in multicellular eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.