Thermocouple (Thermocouple) is a type of temperature sensor used to detect or measure temperature through two types of metal conductors, whose working principle is that each end of a metal conductor is combined to create a "Thermoelectric" effect. One type of metal conductor contained in a thermocouple will serve as a reference with a constant temperature (fixed), while a metal conductor functions as a metal conductor that detects hot temperatures. Sterilisator is a device used to sterilize medical instruments to avoid the bacteria that attach to the remainder of the use of medical instruments. The temperature of the sterilizer varies but generally for dry sterilizers ranges from 175 ° Celsius. From the above problems, the author wants to develop a "4 Channel Sterilizer Calibrator", Using the Arduino Nano Atmega328 as a minimum system, K type thermocouple and MAX6675 module as a sensor. Measurements were made by comparing modules with standard measuring instruments, obtained the smallest error 0.2% at T3 and T4 when measuring 100 ° C, and the largest 4.4% at T2 when measuring 150 ° C.
In some hospitals the infusion is still done manually, medical staff observes fluid drip directly and then controls its rate using a mechanical resistor (clamp), this method is certainly far from the level of accuracy. Infusion pump is a medical aid that has functions to control and ensure the correct dose of infusion fluid that is given to patients under treatment. The purpose of this study is to analyze the accuracy of the TCRT5000 as a drop sensor, based on readings of the infusion pump monitoring system. This module consists of a TCRT5000 drop sensor module, comparator circuit, monostable circuit, stepper motor, L298N motor driver, and ATmega328 microcontroller. The droplets are detected by the TCRT 5000 sensor, then amplified by a comparator and monostable circuit, then the flow rate and remaining volume readings are generated by the ATmega328 microcontroller. Furthermore, this data is sent to the Personal Computer (PC) via wireless HC-11. The results of the flow rate module measurement show that the highest error value is 4% at the 30 ml/hour setting, and the lowest error value is 1% at the 60 ml/hour setting. While the results of the flow rate measurement using an Infuse Device Analyzer, the highest error value is 2,2% at the 30 ml/hour setting, and the lowest error value is 0,58% at the 100 ml/hour setting. This infusion pump monitoring is designed centrally to facilitate the nurse's task in monitoring the infusion dose accurately that is given to the patient.
In the medical world, patient safety is a top priority. The large number of workloads and the frequency of using the devices in the long run will affect the accuracy and accuracy of the tool. If the flow rate and volume of the syringe pump or infusion pump given to the patient are not controlled (overdose or the fluid flow rate is too high) it can cause hypertension, heart failure or pulmonary edema. Therefore, it is necessary to have a calibration, which is an application activity to determine the correctness of the designation of the measuring instrument or measuring material. The purpose of this research is to make a two channel infusion device analyzer using a photodiode sensor. The contribution of this research is that the system can display three calibration results in one measurement at the same setting and can calibrate 2 tools simultaneously. The design of the module is in the form of an infrared photodiode sensor for reading the flowrate value. This study uses an infrared photodiode sensor for channels 1 and 2 installed in the chamber. This study uses a flow rate formula that is applied to the water level system to obtain 3 calibration results. Infrared photodiode sensor will detect the presence of water flowing in the chamber from an infusion or syringe pump. Then the sensor output will be processed by STM32 and 3 calibration results will be displayed on the 20x4 LCD. This tool has an average error value on channel 1 of 3.50% and on channel 2 of 3.39%. It can be concluded that the whole system can work well, the placement and distance between the infrared photodiodes also affects the sensor readings
One of the early examinations that is often done is to detect heart disease using a stethoscope. The electronic stethoscope consists of a membrane and tube from a conventional stethoscope coupled with a condenser microphone which is then connected to a computer. The purpose of this study is to analyze the comparison of two types of microcontrollers in the design of a portable electronic stethoscope equipped with a symptom detector. The research method used is instrumentation with 2 types of microcontrollers to design a heart sound detector. In processing the data to be displayed on the 16x2 Character LCD. Sending heart signal data for 60 seconds to produce BPM data which is processed using 2 different types of microcontrollers. The results of data collection on battery consumption of power usage on the AT mega 2560 resulted in an average saving of 0.11W. Therefore, it can be concluded that the two stethoscopes have a significant difference when compared, where the Arduino Mega 2560 is able to process data from heart signals faster than the AT mega 328P. The results of the research that have been carried out can be implemented using a system that strongly supports the needs when checking heart sound signals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.