Diglycidyl ether of bisphenol-A (DGEBA), having number average molecular weight (M n ) 375, was modified by incorporating the hydroxyl terminated polybutadiene (HTPB) based prepolymer using isophorone diisocyanate as a coupling agent. To increase the compatibility between the epoxy resin and HTPB part, polar groups were introduced in the later to achieve physical and chemical interactions between the two phases. The finally modified DGEBA system was cured with amine based hardener. FTIR and 1 H-NMR were used to monitor the whole modification procedure. The rubber particles size and distribution was monitored as a function of HTPB contents in the resin system using scanning electron microscopy (SEM). The mechanical, thermal and thermo-mechanical properties have shown that the tensile strength, toughness, ductility and impact strength of the modified cured system have been successfully increased at some optimum HTPB contents without affecting the inherent thermal and thermo-mechanical stability associated with DGEBA resin system. Some of the mechanical properties like flexural modulus, tensile modulus and compressive strength decreased with increasing rubber contents.
The title compound, C21H16N2O2, was derived from 1-(2-hydroxyphenyl)-3-(-methoxyphenyl)propane-1,3-dione. The molecular structure of the title compound is stabilized by an intramolecular O—H⋯N hydrogen bond. The dihedral angle between the hydroxyphenyl ring involved in this intramolecular hydrogen bond and the pyrazole ring is significantly smaller [10.07 (6)°] than the dihedral angle between the pyrazole and the other hydroxyphenyl ring [36.64 (5)°]. The benzene ring makes a dihedral angle of 54.95 (3)° with the pyrazole ring. The crystal packing is stabilized by O—H⋯O and O—H⋯N hydrogen bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.