How are memories transferred from short-term to long-term storage? Systems-level memory consolidation is thought to be dependent on the coordinated interplay of cortical slow waves, thalamo-cortical sleep spindles and hippocampal ripple oscillations. However, it is currently unclear how the selective interaction of these cardinal sleep oscillations is organized to support information reactivation and transfer. Here, using human intracranial recordings, we demonstrate that the prefrontal cortex plays a key role in organizing the ripple-mediated information transfer during non-rapid eye movement (NREM) sleep. We reveal a temporally precise form of coupling between prefrontal slow-wave and spindle oscillations, which actively dictates the hippocampal-neocortical dialogue and information transfer. Our results suggest a model of the human sleeping brain in which rapid bidirectional interactions, triggered by the prefrontal cortex, mediate hippocampal activation to optimally time subsequent information transfer to the neocortex during NREM sleep.
Background Recently, van Walraven developed a weighted summary score (VW) based on the 30 comorbidities from the Elixhauser comorbidity system. One of the 30 comorbidities, cardiac arrhythmia, is currently excluded as a comorbidity indicator in administrative datasets such as the Nationwide Inpatient Sample (NIS), prompting us to examine the validity of the VW score and its use in the NIS. Methods Using data from the 2009 Maryland State Inpatient Database, we derived weighted summary scores to predict in-hospital mortality based on the full (30) and reduced (29) set of comorbidities and compared model performance of these and other comorbidity summaries in 2009 NIS data. Results Weights of our derived scores were not sensitive to the exclusion of cardiac arrhythmia. When applied to NIS data, models containing derived summary scores performed nearly identically (c statistics for 30 and 29 variable-derived summary scores: 0.804 and 0.802, respectively) to the model using all 29 comorbidity indicators (c = 0.809), and slightly better than the VW score (c = 0.793). Each of these models performed substantially better than those based on a simple count of Elixhauser comorbidities (c = 0.745) or a categorized count (0, 1, 2, or ≥3 comorbidities; c = 0.737). Conclusions The VW score and our derived scores are valid in the NIS and are statistically superior to summaries using simple co-morbidity counts. Researchers wishing to summarize the Elixhauser comorbidities with a single value should use the VW score or those derived in this study.
Recognizing motivationally salient information is critical to guiding behaviour. The amygdala and hippocampus are thought to support this operation, but the circuit-level mechanism of this interaction is unclear. We used direct recordings in the amygdala and hippocampus from human epilepsy patients to examine oscillatory activity during processing of fearful faces compared with neutral landscapes. We report high gamma (70–180 Hz) activation for fearful faces with earlier stimulus evoked onset in the amygdala compared with the hippocampus. Attending to fearful faces compared with neutral landscape stimuli enhances low-frequency coupling between the amygdala and the hippocampus. The interaction between the amygdala and hippocampus is largely unidirectional, with theta/alpha oscillations in the amygdala modulating hippocampal gamma activity. Granger prediction, phase slope index and phase lag analysis corroborate this directional coupling. These results demonstrate that processing emotionally salient events in humans engages an amygdala-hippocampal network, with the amygdala influencing hippocampal dynamics during fear processing.
Object Despite its long-reported successful record, with almost 60 years of clinical use, the technical complexity regarding the placement of stereoelectroencephalography (SEEG) depth electrodes may have contributed to the limited widespread application of the technique in centers outside Europe. The authors report on a simplified and novel SEEG surgical technique in the extraoperative mapping of refractory focal epilepsy. Methods The proposed technique was applied in patients with medically refractory focal epilepsy. Data regarding general demographic information, method of electrode implantation, time of implantation, number of implanted electrodes, seizure outcome after SEEG-guided resections, and complications were prospectively collected. Results From March 2009 to April 2012, 122 patients underwent SEEG depth electrode implantation at the Cleveland Clinic Epilepsy Center in which the authors' technique was used. There were 65 male and 57 female patients whose mean age was 33 years (range 5–68 years). The group included 21 pediatric patients (younger than 18 years). Planning and implantations were performed in a single stage. The time for planning was, on average, 33 minutes (range 20–47 minutes), and the time for implantation was, on average, 107 minutes (range 47–150 minutes). Complications related to the SEEG technique were observed in 3 patients. The calculated risk of complications per electrode was 0.18%. The seizure-free rate after SEEG-guided resections was 62% in a mean follow-up period of 12 months. Conclusions The authors report on a safe, simplified, and less time-consuming method of SEEG depth electrode implantation, using standard and widely available surgical tools, making the technique a reasonable option for extraoperative monitoring of patients with medically intractable epilepsy in centers lacking the Talairach stereotactic armamentarium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.