Melting phenomena occurs in various industrial applications, such as metal castings of turbine blades, environmental engineering, PCM-based thermal storage devices, etc. During the design of these devices, they are designed for efficient heat transfer rate. To improve the heat transfer rate, understanding of the important flow processes during the melting (and solidification) is necessary. An objective of the present work is to study the effect of natural convection and magnetic field on interface morphology and thereby on melting rate. In this work, therefore, an effect of uniform transverse magnetic field on the melting inside a cavity, filled initially with solid gallium, at various Rayleigh numbers (Ra=3×105, 6×105, and 9×105) is presented. A 2D unsteady numerical simulation, with the enthalpy-porosity formulation, is performed using ANSYS-Fluent. The magnetic field is characterized by the Hartmann number (Ha) and the results are shown for the Ha = 0, 30 and 50. The horizontal walls of the cavity are considered insulated and vertical walls are respectively considered hot and cold. It is observed that the role of natural convection during the melting is significant on the temperature distribution and solid-liquid interface. The increased magnetic field (Ha = 30 and 50) found to have a suppressing effect on the dominance of natural convection at all Rayleigh numbers (Ra=3×105, 6×105, and 9×105).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.