Infochemicals are used by foraging parasitoids in the host selection process from habitat preference until host recognition. Kairomones from the herbivore host plays a vital role in the attraction of parasitoids, particularly in the micro‐habitat. Parasitoids are specifically attracted to their respective herbivore species even when different herbivores are present on the same plant. Chemicals emitted from different stages of host (eggs, larvae, pupae, adult), host by‐products (e.g., frass, exuviae, mandibular gland secretions, defense secretions etc.), or intra‐specific infochemicals (pheromones) can be main signals for the parasitoids. Parasitoids can differentiate between host and non‐host, between different hosts and host stages by perceiving specific volatile and contact kairomones from the host itself, host along with its by‐product, by‐products alone or intra‐specific infochemicals; of which frass (by‐product) and intra‐specific infochemicals are the most reported ones. Adult and larval parasitoids have been reported to be attracted to kairomones of their target stage or byproduct of their host. Pupal parasitoids have been found to utilize kairomones from the preceding host stage while egg parasitoids are known to exploit a variety of host infochemicals, for example, either from eggs themselves or other non‐target host stages, especially adults and adult‐related by‐products. The kairomonal chemicals identified so far include various groups, but mainly hydrocarbons. A high degree of host specificity and host acceptance is important for the parasitoids as any mistake may result in the loss of fitness.
NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.
The effect of Nilaparvata lugens (Stål) infestation duration and density on the host preference and performance of Anagrus nilaparvatae Pang et Wang, an egg parasitoid of rice planthoppers, was determined. The results showed that the parasitoid preferred N. lugens eggs on the plants infested with 10 gravid N. lugens females for 1 d to those plants infested with 10 gravid females for 2 or 3 d. It was also found to prefer N. lugens eggs on plants infested with 10 or 20 adult females after 24 h of infestation to those plants infested with 5 or 80 females. The parasitoid's offsprings had lower survival rates, fecundities, female ratios, indexes of capacity for population increase, and longer developmental durations on plants when they were infested with high N. lugens density (80 adult females per plant). However, the performance of the parasitoid on plants infested with low N. lugens density (5 female adults per plant) was similar to those on plants with intermediate N. lugens density (10 or 20 adult females per plant). Low preference of the parasitoid for N. lugens eggs on plants with heavy or light infestation levels may be correlated with low host suitability and detectability, respectively. The result implies an important role of herbivore-induced rice volatiles in the host preference of the parasitoid A. nilaparvatae, by which the parasitoid perceives the host and its suitability.
The effect of Nilaparvata lugens (Stål) infestation duration and density on the host preference and performance of Anagrus nilaparvatae Pang et Wang, an egg parasitoid of rice planthoppers, was determined. The results showed that the parasitoid preferred N. lugens eggs on the plants infested with 10 gravid N. lugens females for 1 d to those plants infested with 10 gravid females for 2 or 3 d. It was also found to prefer N. lugens eggs on plants infested with 10 or 20 adult females after 24 h of infestation to those plants infested with 5 or 80 females. The parasitoid's offsprings had lower survival rates, fecundities, female ratios, indexes of capacity for population increase, and longer developmental durations on plants when they were infested with high N. lugens density (80 adult females per plant). However, the performance of the parasitoid on plants infested with low N. lugens density (5 female adults per plant) was similar to those on plants with intermediate N. lugens density (10 or 20 adult females per plant). Low preference of the parasitoid for N. lugens eggs on plants with heavy or light infestation levels may be correlated with low host suitability and detectability, respectively. The result implies an important role of herbivore-induced rice volatiles in the host preference of the parasitoid A. nilaparvatae, by which the parasitoid perceives the host and its suitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.