Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required.
Alcoholic liver disease (ALD) is one of the commonest causes of cirrhosis and liver failure in the developed world. Hepatic inflammation is the critical stage in progression of both ALD and non-ALD, but it remains difficult to study the underlying mechanisms in a human system, and current animal models do not fully recapitulate human liver disease. We developed a human tissue-based system to study lymphocyte recruitment in response to ethanol challenge. Precision-cut liver slices (PCLS) from human livers were incubated in culture, and hepatic function was determined by albumin production, 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide assay, glucose uptake responses, and morphometric assessment. Responses of tissue and lymphocytes to ethanol exposure were determined by PCR, flow cytometry, histology, and lymphocyte infiltration assays. Human PCLS demonstrated appropriate upregulation of CYP2E1, ADH1α, and ADH3 in response to ethanol treatment. Ethanol also induced expression of endothelial VCAM-1 and ICAM-1, production of sICAM-1 and CXCL8, and the chemokine receptors CXCR3 and CXCR4 on CD4 and CD8 lymphocytes. CXCR3- and CXCR4-dependent migration of lymphocytes into the tissue increased significantly in response to treatment with ethanol. We have demonstrated that ethanol increases chemokine receptor expression and lymphocyte recruitment into human liver tissue, suggesting that it may operate directly to promote hepatitis in ALD. The physiological and pathophysiological responses of the PCLS to ethanol in vitro highlight the potential of this assay for dissecting the molecular mechanisms underlying human liver inflammation and as a screening tool for novel therapeutics.
Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.