Cholangiocarcinoma is a disease entity comprising diverse epithelial tumours with features of cholangiocyte differentiation: cholangiocarcinomas are categorized according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA). Each subtype has a distinct epidemiology, biology, prognosis, and strategy for clinical management. The incidence of cholangiocarcinoma, particularly iCCA, has increased globally over the past few decades. Surgical resection remains the mainstay of potentially curative treatment for all three disease subtypes, whereas liver transplantation after neoadjuvant chemoradiation is restricted to a subset of patients with early stage pCCA. For patients with advanced-stage or unresectable disease, locoregional and systemic chemotherapeutics are the primary treatment options. Improvements in external-beam radiation therapy have facilitated the treatment of cholangiocarcinoma. Moreover, advances in comprehensive whole-exome and transcriptome sequencing have defined the genetic landscape of each cholangiocarcinoma subtype. Accordingly, promising molecular targets for precision medicine have been identified, and are being evaluated in clinical trials, including those exploring immunotherapy. Biomarker-driven trials, in which patients are stratified according to anatomical cholangiocarcinoma subtype and genetic aberrations, will be essential in the development of targeted therapies. Targeting the rich tumour stroma of cholangiocarcinoma in conjunction with targeted therapies might also be useful. Herein, we review the evolving developments in the epidemiology, pathogenesis, and management of cholangiocarcinoma.
Cholangiocarcinomas (CCAs) are hepatobiliary cancers with features of cholangiocyte differentiation; they can be classified anatomically as intrahepatic (iCCA), perihilar (pCCA), or distal CCA (dCCA). These subtypes differ not only in their anatomic location but in epidemiology, origin, etiology, pathogenesis, and treatment. The incidence and mortality of iCCA has been increasing over the past 3 decades, and only a low percentage of patients survive until 5 y after diagnosis. Geographic variations in the incidence of CCA are related to variations in risk factors. Changes in oncogene and inflammatory signaling pathways, as well as genetic and epigenetic alterations and chromosome aberrations, have been shown to contribute to development of CCA. Furthermore, CCAs are surrounded by a dense stroma that contains many cancer-associated fibroblasts, which promotes their progression. We have gained a better understanding of the imaging characteristics of iCCAs and have developed advanced cytologic techniques to detect pCCAs. Patients with iCCAs are usually treated surgically, whereas liver transplantation following neoadjuvant chemoradiation is an option for a subset of patients with pCCAs. We review recent developments in our understanding of the epidemiology, pathogenesis, of CCA, along with advances in classification, diagnosis and treatment.
Patients with cirrhosis and very early iCCA may become candidates for liver transplantation; a prospective multicenter clinical trial is needed to further confirm these results. (Hepatology 2016;64:1178-1188).
Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation, and are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2 years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis have better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged including potential driver FGFR gene fusions and somatic mutations in IDH 1/2 in iCCA, PRKACA or PRKACB gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, potentially actionable molecular aberrations in each CCA subtype, and role of immunotherapy in CCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.